江苏省淮安市淮阴区淮阴师院附属中学2024届八年级下册数学期末经典模拟试题含解析_第1页
江苏省淮安市淮阴区淮阴师院附属中学2024届八年级下册数学期末经典模拟试题含解析_第2页
江苏省淮安市淮阴区淮阴师院附属中学2024届八年级下册数学期末经典模拟试题含解析_第3页
江苏省淮安市淮阴区淮阴师院附属中学2024届八年级下册数学期末经典模拟试题含解析_第4页
江苏省淮安市淮阴区淮阴师院附属中学2024届八年级下册数学期末经典模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省淮安市淮阴区淮阴师院附属中学2024届八年级下册数学期末经典模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.菱形ABCD中,如果E、F、G、H分别是各边中点,那么四边形EFGH的形状是()A.梯形 B.菱形 C.矩形 D.正方形2.如果代数式有意义,那么x的取值范围是()A.x≥0 B.x≠1 C.x>1 D.x≥0且x≠13.如图,在菱形ABCD中,对角线AC、BD相较于点O,BD=8,BC=5,AE⊥BC于点E,则AE的长为()A.5 B. C. D.4.如图,在中,,将绕点按逆时针方向旋转得到,此时点恰好在边上,则点与点之间的距离为()A. B. C. D.5.下列矩形都是由大小不等的正方形按照一定规律组成,其中,第①个矩形的周长为6,第②个矩形的周长为10,第③个矩形的周长为16,…则第⑥个矩形的周长为()①②③ ④A.42 B.46 C.68 D6.已知一次函数上有两点,,若,则、的关系是()A. B. C. D.无法判断7.下列命题,是真命题的是()A.对角线互相垂直的四边形是菱形 B.对角线相等的四边形是矩形C.对角线互相垂直平分的四边形是正方形 D.对角线相等的菱形是正方形8.如图,DC⊥AC于C,DE⊥AB于E,并且DE=DC,则下列结论中正确的是()A.DE=DF B.BD=FD C.∠1=∠2 D.AB=AC9.如图.在正方形中,为边的中点,为上的一个动点,则的最小值是()A. B. C. D.10.若a≤1,则(1-a)3A.(a-1)a-1 B.(1-a)a-1 C.(a-1)11.矩形、菱形、正方形都一定具有的性质是()A.邻边相等 B.四个角都是直角C.对角线相等 D.对角线互相平分12.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是()A. B. C. D.2二、填空题(每题4分,共24分)13.如图,是将绕点顺时针旋转得到的.若点,,在同一条直线上,则的度数是______.14.如图,菱形ABCD的对角线AC、BD相交于点O,M、N分别为边AB、BC的中点,连接MN.若MN=1,BD,则菱形的周长为________.15.李老师开车从甲地到相距240千米的乙地,如果油箱剩余油量y(升)与行驶里程x(千米)之间是一次函数关系,其图象如图所示,那么到达乙地时油箱剩余油量是升.16.在函数中,自变量x的取值范围是________________.17.小明对自己上学路线的长度进行了20次测量,得到20个数据x1,x2,…,x20,已知x1+x2+…+x20=2019,当代数式(x﹣x1)2+(x﹣x2)2+…+(x﹣x20)2取得最小值时,x的值为___________.18.如图,在正方形中,是对角线上的点,,,分别为垂足,连结.设分别是的中点,,则的长为________。三、解答题(共78分)19.(8分)已知:如图,在中,,cm,cm.直线从点出发,以2cm/s的速度向点方向运动,并始终与平行,与线段交于点.同时,点从点出发,以1cm/s的速度沿向点运动,设运动时间为(s)().(1)当为何值时,四边形是矩形?(2)当面积是的面积的5倍时,求出的值;20.(8分)如图1,在平面直角坐标系中,直线AB与x轴、y轴相交于、两点,动点C在线段OA上(不与O、A重合),将线段CB绕着点C顺时针旋转得到CD,当点D恰好落在直线AB上时,过点D作轴于点E.(1)求证,;(2)如图2,将沿x轴正方向平移得,当直线经过点D时,求点D的坐标及平移的距离;(3)若点P在y轴上,点Q在直线AB上,是否存在以C、D、P、Q为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的Q点坐标,若不存在,请说明理由.21.(8分)将函数y=x+b(b为常数)的图象位于x轴下方的部分沿x轴翻折至其上方后,所得的折线是函数y=|x+b|(b为常数)的图象(1)当b=0时,在同一直角坐标系中分别画出函数与y=|x+b|的图象,并利用这两个图象回答:x取什么值时,比|x|大?(2)若函数y=|x+b|(b为常数)的图象在直线y=1下方的点的横坐标x满足0<x<3,直接写出b的取值范围22.(10分)将含有45°角的直角三角板ABC和直尺如图摆放在桌子上,然后分别过A、B两个顶点向直尺作两条垂线段AD,BE.(1)请写出图中的一对全等三角形并证明;(2)你能发现并证明线段AD,BE,DE之间的关系吗?23.(10分)已知某实验中学有一块四边形的空地ABCD,如图所示,学校计划在空地上种植草坪,经测量∠A=90°,AC=3m,BD=12m,CB=13m,DA=4m,若每平方米草坪需要300元,间学校需要投入多少资金买草坪?24.(10分)已知:如图,菱形ABCD的对角线AC,BD相交于O,点E,F分别是AD,DC的中点,已知OE=,EF=3,求菱形ABCD的周长和面积.25.(12分)如图,在矩形ABCD中,点E为AD上一点,连接BE、CE,.(1)如图1,若;(2)如图2,点P是EC的中点,连接BP并延长交CD于点F,H为AD上一点,连接HF,且,求证:.26.如图,已知平行四边形ABCD延长BA到点E,延长DC到点E,使得AE=CF,连结EF,分别交AD、BC于点M、N,连结BM,DN.(1)求证:AM=CN;(2)连结DE,若BE=DE,则四边形BMDN是什么特殊的四边形?并说明理由.

参考答案一、选择题(每题4分,共48分)1、C【解析】分析:利用中位线的性质证明四边形EFGH为平行四边形;再根据菱形的对角线互相垂直,可证∠EHG=90°,从而根据矩形的判定:有一角为90°的平行四边形是矩形,得出菱形中点四边形的形状.详解:∵菱形ABCD中,如果E、F、G、H分别是各边的中点,∴HE∥GF∥AC,HE=GF=AC,∴四边形EFGH为平行四边形;又∵菱形的对角线互相垂直,∴∠EHG=90°,∴四边形EFGH的形状是矩形.故选:C.点睛:此题主要考查了菱形的性质,三角形中位线定理,矩形的判定.矩形的判定定理有:(1)有一个角是直角的平行四边形是矩形;(2)有三个角是直角的四边形是矩形;(3)对角线互相平分且相等的四边形是矩形.2、C【解析】

根据二次根式中被开方数是非负数,分式分母不为零列出不等式即可求出答案.【详解】根据题意可知,解得x>1,故答案选C.【点睛】本题考查的是二次根式和分式存在有意义的条件,熟知该知识点是解题的关键.3、C【解析】

在中,根据求出OC,再利用面积法可得,由此求出AE即可.【详解】四边形ABCD是菱形,,,,在中,,,故,解得:.故选C.【点睛】此题主要考查了菱形的性质以及勾股定理,正确利用三角形面积求出AE的长是解题关键.4、D【解析】

连接BE,利用旋转的性质和直角三角形的性质解答即可.【详解】解:如图,连接BE,由旋转可知AC=DC,BC=EC,

∵∠A=,∴△ACD为等边三角形,

∴∠ACD=,

∴∠BCE=∠ACD=,

∴△BCE为等边三角形,

在Rt△ABC中,∠A=,AC=6,则BC=6.

∴BE=BC=6,

故选D.【点睛】此题考查旋转问题,等边三角形的判定与性质,直角三角形的性质等,关键是利用旋转的性质和直角三角形的性质解答.5、C【解析】试题分析:观察图形:第①个矩形的周长为6,第②个矩形的周长为10,第③个矩形的周长为16,通过计算第=4\*GB3④矩形的周长为26,前4个矩形的周长有这样的一个规律,第③个的矩形的周长=第①个矩形的周长+第②个矩形的周长,即16=6+10;第=4\*GB3④个的矩形的周长=第=3\*GB3③个矩形的周长+第②个矩形的周长,即26=10+16;第=5\*GB3⑤个的矩形的周长=第=3\*GB3③个矩形的周长+第=4\*GB3④个矩形的周长,即=26+16=42;第=6\*GB3⑥个的矩形的周长=第=4\*GB3④个矩形的周长+第=5\*GB3⑤个矩形的周长,即=26+42=48考点:矩形的周长点评:本题考查矩形的周长,通过前四个2的周长找出规律是本题的关键,考查学生的归纳能力6、A【解析】

由一次函数可知,,y随x的增大而增大,由此选择答案即可.【详解】由一次函数可知,,y随x的增大而增大;故选A【点睛】本题考查一次函数增减性问题,确定k的符号,进而确定函数增减趋势,是解答本题的关键.7、D【解析】

根据菱形的判定方法对A进行判断;根据矩形的判定方法对B进行判断;根据正方形的判定方法对C进行判断;根据平行四边形的判定方法对D进行判断.【详解】解:A、对角线互相垂直的平行四边形是菱形,所以A选项错误;

B、对角线相等的平行四边形是矩形,所以B选项错误;

C、对角线互相垂直平分且相等的四边形是正方形,所以C选项错误;

D、对角线相等的菱形是正方形,正确,是真命题;所以D选项正确.

故选:D.【点睛】本题考查度的是命题的真假判断以及矩形、菱形的判定正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.熟练掌握矩形、菱形的判定定理是解答此题的关键.8、C【解析】分析:如图,由已知条件判断AD平分∠BAC即可解决问题.详解:如图,∵DC⊥AC于C,DE⊥AB于E,且DE=DC,∴点D在∠BAC的角平分线上,∴∠1=∠1.故选C.点睛:该题主要考查了角平分线的判定及其性质的应用问题;牢固掌握角平分线的性质是解题的关键.9、A【解析】

根据正方形的性质得到点A和点C关于BD对称,BC=AB=4,由线段的中点得到BE=2,连接AE交BD于P,则此时,PC+PE的值最小,根据勾股定理即可得到结论.【详解】解:四边形为正方形关于的对称点为.连结交于点,如图:此时的值最小,即为的长.∵为中点,BC=4,∴BE=2,∴.故选:A.【点睛】本题考查了轴对称-最短路线问题,正方形的性质,解此题通常是利用两点之间,线段最短的性质得出.10、D【解析】

将(1﹣a)3化为(1﹣a)2•(1﹣a),利用二次根式的性质进行计算即可.【详解】若a≤1,有1﹣a≥0;则(1-a)3=(1-a)2故选D.【点睛】本题考查了二次根式的意义与化简.二次根式a2规律总结:当a≥0时,a2=a;当a≤0时,11、D【解析】矩形、菱形、正方形都是平行四边形,所以一定都具有的性质是平行四边形的性质,即对角线互相平分.故选D.12、A【解析】

连接AC、CF,如图,根据正方形的性质得∠ACD=45°,∠FCG=45°,AC=,CF=3,则∠ACF=90°,再利用勾股定理计算出AF=2,然后根据直角三角形斜边上的中线求CH的长.【详解】连接AC、CF,如图,∵四边形ABCD和四边形CEFG都是正方形,∴∠ACD=45°,FCG=45°,AC=BC=,CF=CE=3,∴∠ACF=45°+45°=90°,在Rt△ACF中,AF=,∵H是AF的中点,∴CH=AF=.故选A.【点睛】本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.两条对角线将正方形分成四个全等的等腰直角三角形.也考查了直角三角形斜边上的中线性质及勾股定理.二、填空题(每题4分,共24分)13、【解析】

根据旋转的性质,即可求出的度数.【详解】旋转,,,,.故答案为:.【点睛】本题考查了三角形的旋转问题,掌握旋转的性质是解题的关键.14、8【解析】

由三角形中位线的性质可求出AC的长,根据菱形的性质可得OA、OB的长,利用勾股定理可求出AB的长,即可求出菱形的周长.【详解】∵M、N分别为边AB、BC的中点,MN=1,∴AC=2MN=2,∵AC、BD是菱形ABCD的对角线,BD=2,∴OA=AC=1,OB=BD=,∴AB==2,∴菱形的周长=4AB=8,故答案为:8【点睛】本题考查了菱形的性质、三角形中位线的性质及勾股定理,菱形的四条边相等,对角线互相垂直平分且平分对角;三角形中位线平行于第三边且等于第三边的一半.熟练掌握相关性质是解题关键.15、1【解析】解:由图象可得出:行驶160km,耗油(35﹣25)=10(升),∴行驶240km,耗油×10=15(升),∴到达乙地时邮箱剩余油量是35﹣15=1(升).故答案为1.16、x≥0【解析】【分析】由已知可得,x≥0且x+1≠0,可求得x的取值范围.【详解】由已知可得,x≥0且x+1≠0,所以,x的取值范围是x≥0故答案为:x≥0【点睛】本题考核知识点:自变量取值范围.解题关键点:根据式子的特殊性求自变量的取值范围.17、100.1【解析】

先设出y=(x-x1)2+(x-x2)2+(x-x3)2+…+(x-x20)2,然后进行整理得出y=20x2-2(x1+x2+x3+…+x20)x+(x12+x22+x32+…+x202),再求出二次函数的最小值即可.【详解】解:设y=(x-x1)2+(x-x2)2+(x-x3)2+…+(x-x20)2

=x2-2xx1+x12+x2-2xx2+x22+x2-2xx3+x32+…+x2-2xx20+x202

=20x2-2(x1+x2+x3+…+x20)x+(x12+x22+x32+…+x202),

=20x2-2×2019x+(x12+x22+x32+…+x202),

则当x=时,(x-x1)2+(x-x2)2+(x-x3)2+…+(x-x20)2取得最小值,

即当x=100.1时,(x-x1)2+(x-x2)2+(x-x3)2+…+(x-x20)2取得最小值.

故答案为100.1.【点睛】此题考查了二次函数的性质,关键是设y=(x-x1)2+(x-x2)2+(x-x3)2+…+(x-x20)2,整理出一个二次函数.18、2.1【解析】

连接AG,CG,根据矩形的判定定理得到四边形CFGE是矩形,求得CG=EF=1,根据全等三角形的性质得到AG=CG=1,由三角形中位线的性质即可得到结论.【详解】连接AG,CG,∵在正方形ABCD中,∠BCD=90°,∵GE⊥CD,GF⊥BC,∴四边形CFGE是矩形,∴CG=EF=1,∵AB=BC,∠ABD=∠CBD=41°,∵BG=BG,∴△ABG≌△CBG(SAS),∴AG=CG=1,∵M,N分别是AB,BG的中点,∴MN=AG=2.1,故答案为:2.1.【点睛】本题考查正方形的性质,全等三角形的判定和性质,三角形的中位线定理,正确的作出辅助线是解题的关键.三、解答题(共78分)19、(1);(2)。【解析】

(1)首先根据勾股定理计算AB的长,再根据相似比例表示PE的长度,再结合矩形的性质即可求得t的值.(2)根据面积相等列出方程,求解即可.【详解】解:(1)在中,,,当时,四边形PECF是矩形,解得(2)由题意整理得,解得,面积是的面积的5倍。【点睛】本题主要考查矩形的动点问题,这是近几年的考试热点,必须熟练掌握.20、(1),见解析;(2)D(3,1),平移的距离是个单位,见解析;(3)存在满足条件的点Q,其坐标为或或,见解析.【解析】

(1)根据AAS或ASA即可证明;

(2)首先求直线AB的解析式,再求出出点D的坐标,再求出直线B′C′的解析式,求出点C′的坐标即可解决问题;(3)如图3中,作CP∥AB交y轴于P,作PQ∥CD交AB于Q,则四边形PCDQ是平行四边形,求出直线PC的解析式,可得点P坐标,点C向左平移1个单位,向上平移个单位得到P,推出点D向左平移1个单位,向上平移个单位得到Q,再根据对称性可得Q′、Q″的坐标.【详解】(1)∵,∴,,∴,∵,∴(2)∵直线AB与x轴,y轴交于、两点∴直线AB的解析式为∵,∴,设,则把代入得到,∴∵,∴直线BC的解析式为,设直线的解析式为,把代入得到∴直线的解析式为,∴,∴∴平移的距离是个单位.(3)如图3中,作CP∥AB交y轴于P,作PQ∥CD交AB于Q,则四边形PCDQ是平行四边形,

易知直线PC的解析式为y=-x+,

∴P(0,),

∵点C向左平移1个单位,向上平移个单位得到P,

∴点D向左平移1个单位,向上平移个单位得到Q,

∴Q(2,),

当CD为对角线时,四边形PCQ″D是平行四边形,可得Q″,

当四边形CDP′Q′为平行四边形时,可得Q′,

综上所述,存在满足条件的点Q,其坐标为或或【点睛】本题考查一次函数综合题、平行四边形的判定和性质、全等三角形的判定和性质、待定系数法等知识,解题的关键是灵活运用待定系数法解决问题,学会用分类讨论的思想思考问题,学会用平移、对称等性质解决问题,属于中考压轴题.21、(1)见解析,;(2)【解析】

(1)画出函数图象,求出两个函数图象的交点坐标,利用图象法即可解决问题;(2)利用图象法即可解决问题.【详解】解:(1)当b=0时,y=|x+b|=|x|列表如下:x-1011y=|x|101描点并连线;∴如图所示:该函数图像为所求∵∴或∴两个函数的交点坐标为A,B(2,2),∴观察图象可知:时,比大;(2)如图,观察图象可知满足条件的b的值为,【点睛】本题主要考查了一次函数的图象,一次函数的性质,一次函数图象与几何变换,掌握一次函数的图象,一次函数的性质,一次函数图象与几何变换是解题的关键.22、(1)△ADC≌△CEB(2)AD=BE+DE【解析】

(1)结论:△ADC≌△CEB.根据AAS证明即可;(2)由三角形全等的性质即可解决问题;【详解】解:(1)结论:△ADC≌△CEB.理由:∵AD⊥CE,BE⊥CE,∴∠ACB=∠ADC=∠CEB=90°,∴∠ACD+∠CAD=90°,∠ACD+∠ECB=90°,∴∠CAD=∠ECB,∵AC=CB,∴△ADC≌△CEB(AAS).(2)结论:AD=BE+DE.理由:∵△ADC≌△CEB,∴AD=CE,CD=BE,∵CE=CD+DE,∴AD=BE+DE.【点睛】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形的全等的条件,属于中考常考题型.23、学校需要投入10800元买草坪【解析】

连接CD,在直角三角形ACD中可求得CD的长,由BD、CB、CD的长度关系可得三角形DBC为一直角三角形,BC为斜边;由此看,四边形ABCD由Rt△ACD和Rt△DBC构成,然后求直角三角形的面积之和即可.【详解】解:连接CD,在RtΔACD中,在ΔCBD中,,而即所以∠BDC=90°则=5所以需費用36×300=10800(元).答:学校需要投入10800元买草坪..【点睛】本题考查了勾股定理的应用,通过勾股定理判定三角形直角三角形,是解答本题的关键.24、20,1【解析】

首先由菱形ABCD的对角线AC,BD相交于O,点E,F分别是AD,DC的中点,根据直角三角形斜边上的中线等于斜边的一半,可求得AD的长,由三角形中位线定理可求得AC的长,进而可求出菱形的周长,再求出BD的长即可求出菱形的面积.【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论