陕西省西安市雁塔区陕西师大附中2024届数学八年级下册期末学业水平测试试题含解析_第1页
陕西省西安市雁塔区陕西师大附中2024届数学八年级下册期末学业水平测试试题含解析_第2页
陕西省西安市雁塔区陕西师大附中2024届数学八年级下册期末学业水平测试试题含解析_第3页
陕西省西安市雁塔区陕西师大附中2024届数学八年级下册期末学业水平测试试题含解析_第4页
陕西省西安市雁塔区陕西师大附中2024届数学八年级下册期末学业水平测试试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

陕西省西安市雁塔区陕西师大附中2024届数学八年级下册期末学业水平测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,将边长为2的正方形OABC放在平面直角坐标系中,O是原点,点A的横坐标为1,则点C的坐标为()A.(﹣2,1) B.(﹣1,2) C.(,﹣1) D.(﹣,1)2.兴趣小组的同学要测量树的高度.在阳光下,一名同学测得一根长为1米的竹竿的影长为0.4米,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶水平面上,测得此影子长为0.2米,一级台阶高为0.3米,如图所示,若此时落在地面上的影长为4.4米,则树高为()A.11.8米 B.11.75米C.12.3米 D.12.25米3.如图,在▱ABCD中,对角线AC与BD相交于点O,E是边CD的中点,连结若,,则的度数为A. B. C. D.4.已知是方程的一个根,则()A. B. C. D.5.如图,有一个水池,其底面是边长为16尺的正方形,一根芦苇AB生长在它的正中央,高出水面部分BC的长为2尺,如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B恰好碰到岸边的B′,则这根芦苇AB的长是()A.15尺 B.16尺 C.17尺 D.18尺6.若方程有增根,则m的值为()A.2 B.4 C.3 D.-37.下列各点中,在双曲线y=-上的点是().A.(,-9) B.(3,1) C.(-1,-3) D.(6,)8.点(-2,3)关于x轴的对称点为().A.(-2,-3) B.(2,-3) C.(2,3) D.(3,-2)9.若等腰三角形的周长为18cm,其中一边长为4cm,则该等腰三角形的底边长为()A.10 B.7或10 C.4 D.7或410.某服装加工厂计划加工400套运动服,在加工完160套后,采用了新技术,工作效率比原计划提高了20%,结果共有了18天完成全部任务.设原计划每天加工x套运动服,根据题意可列方程为A. B.C. D.二、填空题(每小题3分,共24分)11.如图,在中,,且把的面积三等分,那么_____.12.已知一次函数的图象过点,那么此一次函数的解析式为__________.13.化简:_________.14.已知一个凸多边形的内角和是它的外角和的3倍,那么这个凸多边形的边数等于_________.15.某商品经过连续两次降价,销售单价由原来的125元降到80元,则平均每次降价的百分率为.16.当时,分式的值是________.17.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩平均数均是9.2环,方差分别为,,,,则成绩最稳定的是______.18.如图,一张三角形纸片,其中,,,现小林将纸片做三次折叠:第一次使点落在处;将纸片展平做第二次折叠,使点若在处;再将纸片展平做第三次折叠,使点落在处,这三次折叠的折痕长依次记为,则的大小关系是(从大到小)__________.三、解答题(共66分)19.(10分)已知:如图,在△ABC中,∠A=120°,AB=4,AC=2.求BC边的长.20.(6分)甲、乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过1元后,超出1元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费,设小红在同一商场累计购物x元,其中x>1.(1)根据题题意,填写下表(单位:元)累计购物实际花费

130

290

x

在甲商场

127

在乙商场

126

(2)当x取何值时,小红在甲、乙两商场的实际花费相同?(3)当小红在同一商场累计购物超过1元时,在哪家商场的实际花费少?21.(6分)解方程:.22.(8分)如图,矩形ABCD和正方形ECGF,其中E、H分别为AD、BC中点,连结AF、HG、AH.(1)求证:;(2)求证:;23.(8分)如图,在中,,是上一点,,过点作的垂线交于点.求证:.24.(8分)某小区积极创建环保示范社区,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,已知温馨提示牌的单价为每个30元,垃圾箱的单价为每个90元,共需购买温馨提示牌和垃圾箱共100个.(1)若规定温馨提示牌和垃圾箱的个数之比为1:4,求所需的购买费用;(2)若该小区至多安放48个温馨提示牌,且费用不超过6300元,请列举所有购买方案,并说明理由.25.(10分)已知,如图,,求证:.证明:∵∴________________()∴________________()又∵∴________________()∴()26.(10分)如图所示,AC是▱ABCD的一条对角线,过AC中点O的直线EF分别交AD,BC于点E,F.(1)求证:△AOE≌△COF;(2)连接AF和CE,当EF⊥AC时,判断四边形AFCE的形状,并说明理由

参考答案一、选择题(每小题3分,共30分)1、D【解析】

首先过点C作CD⊥x轴于点D,过点A作AE⊥x轴于点E,易证得△AOE≌△OCD(AAS),则可得CD=OE=1,OD=AE=,继而求得答案.【详解】解:过点C作CD⊥x轴于点D,过点A作AE⊥x轴于点E,

则∠ODC=∠AEO=90°,

∴∠OCD+∠COD=90°,

∵四边形OABC是正方形,

∴OC=OA,∠AOC=90°,

∴∠COD+∠AOE=90°,

∴∠OCD=∠AOE,

在△AOE和△OCD中,,

∴△AOE≌△OCD(AAS),

∴CD=OE=1,OD=AE=,

∴点C的坐标为:(-,1).

故选:D.【点睛】本题考查了正方形的性质、全等三角形的判定与性质以及勾股定理.注意准确作出辅助线、证得△AOE≌△OCD是解题的关键.2、A【解析】

在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.据此可构造出相似三角形.【详解】根据题意可构造相似三角形模型如图,其中AB为树高,EF为树影在第一级台阶上的影长,BD为树影在地上部分的长,ED的长为台阶高,并且由光沿直线传播的性质可知BC即为树影在地上的全长;延长FE交AB于G,则Rt△ABC∽Rt△AGF,∴AG:GF=AB:BC=物高:影长=1:0.4∴GF=0.4AG又∵GF=GE+EF,BD=GE,GE=4.4m,EF=0.2m,∴GF=4.6∴AG=11.5∴AB=AG+GB=11.8,即树高为11.8米.【点睛】此题考查相似三角形的应用,解题关键在于画出图形.3、B【解析】【分析】直接利用三角形内角和定理得出的度数,再利用三角形中位线定理结合平行线的性质得出答案.【详解】,,,▱ABCD的对角线AC与BD相交于点O,E是边CD的中点,是的中位线,,,故选B.【点睛】本题主要考查了三角形内角和定理、三角形中位线定理等知识,得出EO是的中位线是解题关键.4、D【解析】

把n代入方程得到,再根据所求的代数式的特点即可求解.【详解】把n代入方程得到,故∴3()-7=3-7=-4,故选D.【点睛】此题主要考查一元二次方程的解,解题的关键是熟知一元二次方程的解的定义.5、C【解析】

我们可以将其转化为数学几何图形,如图所示,根据题意,可知EB'的长为16尺,则B'C=8尺,设出AB=AB'=x尺,表示出水深AC,根据勾股定理建立方程,求出的方程的解即可得到芦苇的长.【详解】解:依题意画出图形,设芦苇长AB=AB′=x尺,则水深AC=(x-2)尺,

因为B'E=16尺,所以B'C=8尺

在Rt△AB'C中,82+(x-2)2=x2,

解之得:x=17,

即芦苇长17尺.

故选C.【点睛】本题主要考查勾股定理的应用,熟悉数形结合的解题思想是解题关键.6、D【解析】

增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母(x−1)=0,得到x=1,然后代入化为整式方程的方程算出m的值.【详解】方程两边都乘(x−1),得x=2(x−1)-m,∵原方程有增根,∴最简公分母(x−1)=0,解得x=1,当x=1时,1=2(1−1)-mm=-1.故选:D.【点睛】本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.7、A【解析】

将各点代入曲线的解析式进行计算即可.【详解】A.(,-9),在双曲线解析式上;B.(3,1),不在双曲线解析式上;C.(-1,-3),不在双曲线解析式上;D.(6,),不在双曲线解析式上;故答案为:A.【点睛】本题考查了双曲线的点的问题,掌握代入法是解题的关键.8、A【解析】

根据关于x轴对称的两点的坐标规律:横坐标相同,纵坐标互为相反数,即可求出.【详解】解:∵关于x轴对称的两点的坐标规律:横坐标相同,纵坐标互为相反数∴点(-2,3)关于x轴的对称点为:(-2,-3)故选A.【点睛】此题考查的是求一个点关于x轴对称的对称点的坐标,掌握关于x轴对称的两点的坐标规律:横坐标相同,纵坐标互为相反数,是解决此题的关键.9、C【解析】

根据等腰三角形性质分为两种情况解答:当边长4cm为腰或者4cm为底时【详解】当4cm是等腰三角形的腰时,则底边长18-8=10cm,此时4,4,10不能组成三角形,应舍去;当4cm是等腰三角形的底时,则腰长为(18-4)÷2=7cm,此时4,7,7能组成三角形,所以此时腰长为7,底边长为4,故选C【点睛】本题考查等腰三角形的性质与三角形三边的关系,本题关键在于分情况计算出之后需要利用三角形等边关系判断10、B【解析】试题分析:由设原计划每天加工x套运动服,得采用新技术前用的时间可表示为:天,采用新技术后所用的时间可表示为:天。根据关键描述语:“共用了18天完成任务”得等量关系为:采用新技术前用的时间+采用新技术后所用的时间=18。从而,列方程。故选B。二、填空题(每小题3分,共24分)11、【解析】

根据相似三角形的判定及其性质,求出线段DE,MN,BC之间的数量关系,即可解决问题.【详解】将的面积三等分,设的面积分别为,,,,故答案为:.【点睛】本题考查相似三角形的性质,熟练掌握相似三角形的面积比等于相似比的平方是解决问题的关键.12、【解析】

用待定系数法即可得到答案.【详解】解:把代入得,解得,所以一次函数解析式为.故答案为【点睛】本题考查求一次函数解析式,解题的关键是熟练掌握待定系数法.13、【解析】

分子分母同时约去公因式5xy即可.【详解】解:.

故答案为.【点睛】此题主要考查了分式的约分,关键是找出分子分母的公因式.14、1【解析】

根据多边形的内角和定理,多边形的内角和等于(n-2)•110°,外角和等于360°,然后列方程求解即可.【详解】解:设这个凸多边形的边数是n,根据题意得

(n-2)•110°=3×360°,

解得n=1.

故这个凸多边形的边数是1.

故答案为:1.【点睛】本题主要考查了多边形的内角和公式与外角和定理,根据题意列出方程是解题的关键.15、20%.【解析】

解答此题利用的数量关系是:商品原来价格×(1-每次降价的百分率)2=现在价格,设出未知数,列方程解答即可.【详解】设这种商品平均每次降价的百分率为x,根据题意列方程得,125(1−x)2=80,解得x1=0.2=20%,x2=1.8(不合题意,舍去);故答案为20%【点睛】本题考查了一元二次方程的应用,读懂题意列出关系式是解题的关键.16、2021【解析】

先根据平方差公式对分式进行化简,再将代入即可得到答案.【详解】==(a+2),将代入得原式=2019+2=2021.【点睛】本题考察平方差公式和分式的化简,解题的关键是掌握平方差公式和分式的化简.17、甲【解析】

根据题目中的四个方差,可以比较它们的大小,由方差越小越稳定可以解答本题.【详解】解:∵0.57<0.59<0.62<0.67,

∴成绩最稳定的是甲,故答案为:甲【点睛】本题考查数据的波动。解答本题的关键是明确方差越小越稳定.18、b>c>a.【解析】

由图1,根据折叠得DE是△ABC的中位线,可得出DE的长,即a的长;由图2,同理可得MN是△ABC的中位线,得出MN的长,即b的长;由图3,根据折叠得:GH是线段AB的垂直平分线,得出AG的长,再利用两角对应相等证△ACB∽△AGH,利用比例式可求GH的长,即c的长.【详解】解:第一次折叠如图1,折痕为DE,由折叠得:AE=EC=AC=×4=2,DE⊥AC∵∠ACB=90°∴DE∥BC∴a=DE=BC=×3=,第二次折叠如图2,折痕为MN,由折叠得:BN=NC=BC=×3=,MN⊥BC∵∠ACB=90°∴MN∥AC∴b=MN=AC=×4=2,第三次折叠如图3,折痕为GH,由勾股定理得:AB==5由折叠得:AG=BG=AB=,GH⊥AB∴∠AGH=90°∵∠A=∠A,∠AGH=∠ACB,∴△ACB∽△AGH∴,即,∴GH=,即c=,∵2>>,∴b>c>a,故答案为:b>c>a.【点睛】本题考查了折叠的问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.本题的关键是明确折痕是所折线段的垂直平分线,准确找出中位线,利用中位线的性质得出对应折痕的长,没有中位线的可以考虑用三角形相似来解决.三、解答题(共66分)19、.【解析】

过点C作CD⊥BA,垂足为D.根据平角的定义可得∠DAC=60°,在Rt△ACD中,根据三角函数可求AD,BD的长;在Rt△BCD中,根据勾股定理可求BC的长.【详解】解:过点作,垂足为∵∴在Rt中∴在Rt中【点睛】本题考查解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系.同时考查了勾股定理.20、(1)表格见解析;(2)120;(3)当小红累计购物大于120时上没封顶,选择甲商场实际花费少;当小红累计购物超过1元而不到120元时,在乙商场实际花费少.【解析】

(1)根据已知得出:在甲商场:1+(290-1)×0.9=271,1+(290-1)×0.9x=0.9x+10;在乙商场:20+(290-20)×0.92=278,20+(290-20)×0.92x=0.92x+2.2.(2)根据题中已知条件,求出0.92x+2.2,0.9x+10相等,从而得出正确结论.(3)根据0.92x+2.2与0.9x+10相比较,从而得出正确结论.【详解】解:(1)填表如下:累计购物实际花费

130

290

x

在甲商场

127

271

0.9x+10

在乙商场

126

278

0.92x+2.2

(2)根据题意得:0.9x+10=0.92x+2.2,解得:x=120.答:当x=120时,小红在甲、乙两商场的实际花费相同.(3)由0.9x+10<0.92x+2.2解得:x>120,由0.9x+10>0.92x+2.2,解得:x<120,∴当小红累计购物大于120时上没封顶,选择甲商场实际花费少;当小红累计购物超过1元而不到120元时,在乙商场实际花费少.21、【解析】分析:观察可得最简公分母是,方程两边乘最简公分母,可以把分式方程转化为整式方程求解,最后检验.解:方程两边同乘以,得:化简得:,解得.经检验,是原方程的根.∴原方程的解为.22、(1)详见解析;(2)详见解析.【解析】

(1)根据题意可先证明四边形AHCE为平行四边形,再根据正方形的性质得到∴,,故可证明四边形AHGF是平行四边形,即可求解;(2)根据四边形AHGF是平行四边形,得,根据四边形ABCD是矩形,可得,再根据平角的性质及等量替换即可证明.【详解】(1)证明:∵四边形ABCD是矩形,且E、H分别为AD、BC的中点,∴,,∴四边形AHCE为平行四边形,∴,,又∵四边形ECGF为正方形,∴,,∴,,∴四边形AHGF是平行四边形,∴;(2)证明:∵四边形AHGF是平行四边形,∴,∵四边形ABCD是矩形,∴,∴,又∵,∴;【点睛】此题主要考查正方形的性质与证明,解题的关键是熟知特殊平行四边形的性质定理.23、见解析.【解析】

首先根据HL证明Rt△ECB≌Rt△EDB,得出∠EBC=∠EBD,然后根据等腰三角形三线合一性质即可证明.【详解】解:证明:∵.∴∵∴在中与中,∵,∴(HL)∴,∴(三线合一).【点睛】本题考查了全等三角形的判定与性质,等腰三角形“三线合一”的性质,得出∠EBC=∠EBD,是解题的关键.24、(1)7800元;(2)购买方案为:温馨提示牌和垃圾箱个数分别为45,55;46,54

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论