2024届江苏省南京市高淳区八年级下册数学期末预测试题含解析_第1页
2024届江苏省南京市高淳区八年级下册数学期末预测试题含解析_第2页
2024届江苏省南京市高淳区八年级下册数学期末预测试题含解析_第3页
2024届江苏省南京市高淳区八年级下册数学期末预测试题含解析_第4页
2024届江苏省南京市高淳区八年级下册数学期末预测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江苏省南京市高淳区八年级下册数学期末预测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.在□ABCD中,∠A、∠B的度数之比为5∶4,则∠C等于()A.60° B.80° C.100° D.120°2.若无解,则m的值是()A.3 B.﹣3 C.﹣2 D.23.在△ABC中,∠C=90°,若AB=5,则AB2+AC2+BC2=()A.10 B.15 C.30 D.504.下列各组数据中,能够成为直角三角形三条边长的一组数据是().A. B. C. D.0.3,0.4,0.55.下列生态环保标志中,是中心对称图形的是A. B.C. D.6.如图,∠C=90°,AB=12,BC=3,CD=1.若∠ABD=90°,则AD的长为()A.10 B.13 C.8 D.117.在平面直角坐标系中,点(1,-5)所在象限是()A.第四象限B.第三象限C.第二象限D.第一象限8.下面与是同类二次根式的是()A. B. C. D.9.用反证法证明“三角形的三个外角中至多有一个锐角”,应先假设A.三角形的三个外角都是锐角B.三角形的三个外角中至少有两个锐角C.三角形的三个外角中没有锐角D.三角形的三个外角中至少有一个锐角10.已知点,点都在直线上,则,的大小关系是()A. B. C. D.无法确定二、填空题(每小题3分,共24分)11.如图是棱长为4cm的立方体木块,一只蚂蚁现在A点,若在B点处有一块糖,它想尽快吃到这块糖,则蚂蚁沿正方体表面爬行的最短路程是______cm.12.已知:如图,△ABC中,∠ACB=90°,AB=5cm,AC=4cm,CD⊥AB于D,求CD的长及三角形的面积.13.如图,四边形ACDF是正方形,和都是直角,且点三点共线,,则阴影部分的面积是__________.14.如图,在中,点分别在上,且,,则___________15.一次函数y=kx+b的图象如图所示,若点A(3,m)在图象上,则m的值是__________.16.在△ABC中,∠C=90°,AB=10,其余两边长是两个相邻的偶数,则这个三角形的周长为_____.17.若x1,x2是方程x2+x−1=0的两个根,则x12+x22=____________.18.若直线y=x+h与y=2x+3的交点在第二象限,则h的取值范围是_____.三、解答题(共66分)19.(10分)小明、小亮都是射箭爱好者,他们在相同的条件下各射箭5次,每次射箭的成绩情况如表:射箭次数第1次第2次第3次第4次第5次小明成绩(环)67778小亮成绩(环)48869(1)请你根据表中的数据填写下表:姓名平均数(环)众数(环)方差小明70.4小亮8(2)从平均数和方差相结合看,谁的成绩好些?20.(6分)如图,甲乙两船从港口A同时出发,甲船以16海里/时的速度向南偏东50°航行,乙船向北偏东40°航行,3小时后,甲船到达B岛,乙船到达C岛,若C,B两岛相距60海里,问乙船的航速是多少?21.(6分)如图,正方形网格的每个小方格都是边长为1的正方形,△ABC的顶点都在格点上.(1)分别求出AB,BC,AC的长;(2)试判断△ABC是什么三角形,并说明理由.22.(8分)某直销公司现有名推销员,月份每个人完成销售额(单位:万元),数据如下:整理上面的数据得到如下统计表:销售额人数(1)统计表中的;;(2)销售额的平均数是;众数是;中位数是.(3)月起,公司为了提高推销员的积极性,将采取绩效工资制度:规定一个基本销售额,在基本销售额内,按抽成;从公司低成本与员工愿意接受两个层面考虑,你认为基本销售额定位多少万元?请说明理由.23.(8分)如图,将等腰△ABC绕顶点B逆时针方向旋转40°得到△A1BC1,AB与A1C1相交于点D,AC与A1C1、BC1分别交于点E、F.求证:ΔBCF≌ΔBA1D.当∠C=40°时,请你证明四边形A1BCE是菱形.24.(8分)如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:(1)BC=AD;(2)△OAB是等腰三角形.25.(10分)有甲、乙两个不透明的布袋,甲袋中有两个完全相同的小球,分别标有数字1和-1;乙袋中有三个完全相同的小球,分别标有数字-1、0和1.小丽先从甲袋中随机取出一个小球,记录下小球上的数字为x;再从乙袋中随机取出一个小球,记录下小球上的数字为y,设点A的坐标为(x,y).(1)请用表格或树状图列出点A所有可能的坐标;(1)求点A在反比例函数y=图象上的概率.26.(10分)已知抛物线的顶点为(2,﹣1),且过(1,0)点.(1)求抛物线的解析式;(2)在坐标系中画出此抛物线;

参考答案一、选择题(每小题3分,共30分)1、C【解析】试题分析:根据平行四边形的性质可得∠A、∠B互补,从而可求得∠A的度数,即可得到结果.∵□ABCD∴∠A+∠B=180°∵∠A、∠B的度数之比为5∶4∴∠C=∠A=100°故选C.考点:平行四边形的性质点评:解题的关键是熟练掌握平行四边形的邻角互补、对角相等.2、D【解析】方程两边同乘以x-3可得m+1-x=0,因无解,可得x=3,代入得m=2,故选D.3、D【解析】试题分析:根据题意可知AB为斜边,因此可根据勾股定理可知AB2=A故选D.点睛:此题主要考查了勾股定理的应用,解题关键是根据勾股定理列出直角三角形三边关系的式子,然后化简代换即可.4、D【解析】

先根据三角形的三边关系定理看看能否组成三角形,再根据勾股定理的逆定理逐个判断即可.【详解】A、()2+()2≠()2,即三角形不是直角三角形,故本选项不符合题意;

B、(32)2+(42)2≠(52)2,即三角形不是直角三角形,故本选项不符合题意;

C、()2+()2≠()2,即三角形不是直角三角形,故本选项不符合题意;

D、0.32+0.42=0.52,即三角形是直角三角形,故本选项符合题意;

故选:D.【点睛】考查了三角形的三边关系定理和勾股定理的逆定理,能熟记勾股定理的逆定理的内容是解此题的关键.5、B【解析】

根据中心对称图形的概念解答即可.【详解】A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.故选B.【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6、B【解析】试题分析:在Rt△BCD中,因为BC=3,CD=1,∠C=90°,所以由勾股定理可得:BD=.在Rt△ABD中,BA=12,BD=5,∠ABD=90°,由勾股定理可得:AD=.故选B考点:勾股定理.7、A【解析】分析:根据象限内点的坐标特征即可解答.详解:点(1,-5)横坐标为正,纵坐标为负,故该点在第四象限.点睛:本题主要考查了象限内点的坐标特征,牢记点的坐标特征是解题的关键.8、B【解析】

根据同类二次根式的定义,先将各选项化为最简二次根式,再看被开方数是否相同即可.【详解】解:A、与被开方数不同,不是同类二次根式;B、与被开方数相同,是同类二次根式;C、=3与被开方数不同,不是同类二次根式;D、与被开方数不同,不是同类二次根式.【点睛】此题主要考查了同类二次根式的定义即化成最简二次根式后,被开方数相同.这样的二次根式叫做同类二次根式.9、B【解析】

反证法的步骤中,第一步是假设结论不成立,反面成立.【详解】解:用反证法证明“三角形的三个外角中至多有一个锐角”,应先假设三角形的三个外角中至少有两个锐角,故选B.【点睛】考查了反证法,解此题关键要懂得反证法的意义及步骤在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.10、A【解析】

根据一次函数的性质,当k<0时,y随x的增大而减小,可以解答本题.【详解】解:∵y=-3x+2,k=-3<0,∴y随x的增大而减小,∵点A(-1,y1),B(2,y2)都在直线y=-3x+2上,∴y1>y2,故选:A.【点睛】本题考查一次函数y=kx+b(k≠0,且k,b为常数)的图象性质:当k>0时,y随x的增大而增大;当k<0时,y将随x的增大而减小.二、填空题(每小题3分,共24分)11、【解析】

根据“两点之间线段最短”,将点A和点B所在的各面展开,展开为矩形,AB为矩形的对角线的长即为蚂蚁沿正方体表面爬行的最短距离,再由勾股定理求解即可.【详解】将点A和点B所在的面展开为矩形,AB为矩形对角线的长,∵矩形的长和宽分别为8cm和4cm,∴AB==cm.故蚂蚁沿正方体的最短路程是cm.故答案为:.【点睛】本题考查了勾股定理的拓展应用.“化曲面为平面”是解决“怎样爬行最近”这类问题的关键.12、S△ABC=6cm2,CD=cm.【解析】

利用勾股定理求得BC=3cm,根据直角三角形的面积等于两直角边乘积的一半即可求得△ABC的面积,再利用直角三角形的面积等于斜边乘以斜边上高的一半可得AB•CD=6,由此即可求得CD的长.【详解】∵∠ACB=90°,AB=5cm,AC=4cm,∴BC==3cm,则S△ABC=×AC×BC=×4×3=6(cm2).根据三角形的面积公式得:AB•CD=6,即×5×CD=6,∴CD=cm.【点睛】本题考查了勾股定理、直角三角形面积的两种表示法,根据勾股定理求得BC=3cm是解决问题的关键.13、8【解析】【分析】证明△AEC≌△FBA,根据全等三角形对应边相等可得EC=AB=4,然后再利用三角形面积公式进行求解即可.【详解】∵四边形ACDF是正方形,∴AC=FA,∠CAF=90°,∴∠CAE+∠FAB=90°,∵∠CEA=90°,∴∠CAE+∠ACE=90°,∴∠ACE=∠FAB,又∵∠AEC=∠FBA=90°,∴△AEC≌△FBA,∴CE=AB=4,∴S阴影==8,故答案为8.【点睛】本题考查了正方形的性质、全等三角形的判定与性质,三角形面积等,求出CE=AB是解题的关键.14、【解析】

根据相似三角形的判定定理得到△ADE∽△ABC,根据相似三角形的性质计算即可.【详解】∵DE∥BC,

∴△ADE∽△ABC,∴,

∴,

故答案为:.【点睛】此题考查相似三角形的判定和性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.15、2.5【解析】

先用待定系数法求出直线解析式,再将点A代入求解可得.【详解】解:将(-2,0)、(0,1)代入y=kx+b,得:,解得:∴y=x+1,将点A(3,m)代入,得:即故答案为:2.5【点睛】本题主要考查直线上点的坐标特点,熟练掌握待定系数法求函数解析式是解题的关键.16、24【解析】

设其余两边长分别为、,根据勾股定理列出方程,解方程求出,计算即可.【详解】设其余两边长分别为、,由勾股定理得,,整理得,,解得,(舍去),,则其余两边长分别为、,则这个三角形的周长.故答案为:.【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是、,斜边长为,那么.17、3【解析】

先根据根与系数的关系求出x1+x2和x1•x2的值,再利用完全平方公式对所求代数式变形,然后把x1+x2和x1•x2的值整体代入计算即可.【详解】∵x1,x2是方程x2+x−1=0的两个根,

∴x1+x2=−=−=−1,x1•x2===−1,

∴x12+x22=(x1+x2)2−2x1⋅x2=(−1)2−2×(−1)=1+2=3.

故答案是:3.【点睛】本题考查根与系数的关系,解题的关键是掌握根与系数的关系.18、<h<1【解析】

将两直线解析式联立,求得交点坐标,然后根据交点在第二象限,列出一元一次不等式组,求解即可.【详解】将两直线解析式联立得:解得∵交点在第二象限∴∴<h<1故答案为:<h<1.【点睛】本题考查了二元一次方程组的解法及一元一次不等式组的解法,本题难度不大.三、解答题(共66分)19、(1)填表见解析;(2)见解析.【解析】分析:(1)根据平均数、众数和方差的定义进行填表即可;(2)根据两人的成绩的平均数相同,再根据方差得出乙的成绩比甲稳定,即可求出答案.详解:(1)填表如下:(2)小明和小亮射箭的平均数都是7,但小明比小亮的方差要小,说明小明的成绩较为稳定,所以小明的成绩比小亮的成绩要好些.点睛:本题主要考查了平均数、众数、中位数、方差的统计意义.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.20、乙船的速度是12海里/时.【解析】试题分析:首先理解方位角的概念,根据所给的方位角得到∠CAB=90°.根据勾股定理求得乙船所走的路程,再根据速度=路程÷时间,计算即可.试题解析:根据题意,得∠CAB=180°-40°-50°=90°,

∵AC=16×3=48(海里),BC=60海里,

∴在直角三角形ABC中,根据勾股定理得:AB=(海里).

则乙船的速度是36÷3=12海里/时.21、(1),,;(2)是直角三角形,理由见解析【解析】

(1)根据勾股定理即可分别求出AB,BC,AC的长;(2)根据勾股定理逆定理即可判断.【详解】解:(1)根据勾股定理可知:,,;(2)是直角三角形,理由如下:,,,是直角三角形.【点睛】此题考查的是勾股定理和勾股定理的逆定理,掌握用勾股定理解直角三角形和用勾股定理逆定理判定直角三角形是解决此题的关键.22、(1),;(2)平均数:,众数:,中位数:;(3)基本销售额定为万元,理由详见解析.【解析】

(1)根据题干中的数据可得出a,b的值;(2)按照平均数,中位数,众数的定义分别求得;(3)根据平均数,中位数,众数的意义回答.【详解】解:(1),;(2)平均数=(10×2+13×3+15+17×7+18+22×4+23×3+24×3+26×4+28×2)÷30=20(万元);出现次数最多的是17万元,所以众数是17(万元);把销售额按从小到大顺序排列后,第15,16位都是22万元,所以中位数是22(万元).故答案为:;;.(3)基本销售额定为万元.理由:作为数据的代表,本组数据的平均数、众数、中位数三个量作为基本额都具有合理性.其中中位数为万最大,选择中位数对公司最有利,付出成本最低,对员工来说,这只是个中等水平,可以接受,所以选择中位数作为基本额.【点睛】考查学生对平均数、中位数、众数的计算及运用其进行分析的能力.23、(1)详见解析;(2)详见解析.【解析】试题分析:(1)根据旋转的性质,得出A1B=AB=BC,∠A=∠A1=∠C,∠A1BD=∠CBC1,再根据ASA即可判定△BCF≌△BA1D;(2)根据∠C=40°,△ABC是等腰三角形,即可得出∠A=∠C1=∠C=40°,进而得到∠C1=∠CBF,∠A=∠A1BD,由此可判定A1E∥BC,A1B∥CE,进而得到四边形A1BCE是平行四边形,最后根据A1B=BC,即可判定四边形A1BCE是菱形.(1)∵△ABC是等腰三角形,∴AB=BC,∠A=∠C,∵将等腰△ABC绕顶点B逆时针方向旋转40度到△A1BC1的位置,∴A1B=AB=BC,∠A=∠A1=∠C,∠A1BD=∠CBC1,在△BCF与△BA1D中,,∴△BCF≌△BA1D(ASA);(2)∵∠C=40°,△ABC是等腰三角形,∴∠A=∠C1=∠C=40°,∴∠C1=∠CBF=40°,∠A=∠A1BD=40°,∴A1E∥BC,A1B∥CE,∴四边形A1BCE是平行四边形,∵A1B=BC,∴四边形A1BCE是菱形.24、证明:(1)见解析(2)见解析【解析】

(1)根据AC⊥BC,BD⊥AD,得出△ABC与△BAD是直角三角形,再由AC=BD,AB=BA,根据HL得出△ABC≌△BAD,即可证出BC=AD.(2)根据△ABC≌△BAD,得出∠CAB=∠DBA,从而证出OA=OB,△OAB是等腰三角形.【详解】证明:(1)∵AC⊥BC,BD⊥AD,∴△ABC与△BAD是直角三角形,在△ABC和△BAD中,∵AC="BD",AB=BA,∠ACB=∠BDA

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论