2024届辽宁省大连高新区七校联考八年级数学第二学期期末监测试题含解析_第1页
2024届辽宁省大连高新区七校联考八年级数学第二学期期末监测试题含解析_第2页
2024届辽宁省大连高新区七校联考八年级数学第二学期期末监测试题含解析_第3页
2024届辽宁省大连高新区七校联考八年级数学第二学期期末监测试题含解析_第4页
2024届辽宁省大连高新区七校联考八年级数学第二学期期末监测试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届辽宁省大连高新区七校联考八年级数学第二学期期末监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,在ABCD中,对角线AC、BD相交于点O.E、F是对角线AC上的两个不同点,当E、F两点满足下列条件时,四边形DEBF不一定是平行四边形().A.AE=CF B.DE=BF C. D.2.如图,直线y=kx+b过A(-1,2),B(-2,0)两点,则0≤kx+b≤-2x的解集为()A.x≤-2或x≥-1 B.0≤y≤2 C.-2≤x≤0 D.-2≤x≤-13.如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F,若BF=12,AB=10,则AE的长为()A.13 B.14 C.15 D.164.下列视力表的部分图案中,既是轴对称图形亦是中心对称图形的是()A. B. C. D.5.已知点,,都在直线y=−3x+b上,则的值的大小关系是()A. B. C. D.6.式子有意义,则a的取值范围是()A.且 B.或C.或 D.且7.为了了解我市50000名学生参加初中毕业考试数学成绩情况,从中抽取了1名考生的成绩进行统计.下列说法:①这50000名学生的数学考试成绩的全体是总体;②每个考生是个体;③1名考生是总体的一个样本;④样本容量是1.其中说法正确的有()A.4个 B.3个 C.2个 D.1个8.如图,在正方形外取一点,连接、、,过点作的垂线交于点.若,,下列结论:①;②;③点到直线的距离为;④;⑤正方形.其中正确的是()A.①②③④ B.①②④⑤ C.①③④ D.①②⑤9.如图,在平面直角坐标系中,已知点A(1,3),B(n,3),若直线y=2x与线段AB有公共点,则n的值不可能是()A.1.4 B.1.5 C.1.6 D.1.710.下列各命题都成立,其中逆命题也成立的是()A.若a>0,b>0,则a+b>0B.对顶角相等C.全等三角形的对应角相等D.平行四边形的两组对边分别相等11.如图是我市某一天内的气温变化图,根据图象,下列说法中错误的是()A.这一天中最高气温是26℃B.这一天中最高气温与最低气温的差为16℃C.这一天中2时至14时之间的气温在逐渐升高D.这一天中14时至24时之间的气温在逐渐降低12.如图,正方形中,点是对角线上的一点,且,连接,,则的度数为()A.20° B.22.5° C.25° D.30°二、填空题(每题4分,共24分)13.函数中,自变量x的取值范围是___________.14.若整数x满足|x|≤3,则使为整数的x的值是(只需填一个).15.如图,平行四边形ABCD的面积为32,对角线BD绕着它的中点O按顺时针方向旋转一定角度后,其所在直线分别交BC,AD于点E、F,若AF=3DF,则图中阴影部分的面积等于_____16.在平面直角坐标系中点、分别是轴、轴上的点且点的坐标是,.点在线段上,是靠近点的三等分点.点是轴上的点,当是等腰三角形时,点的坐标是__________.17.一次函数图象经过一、三、四象限,则反比例函数的函数值随的增大而__________.(填增大或减小)18.如图,在平行四边形ABCD中,点E、F分别在边BC、AD上,请添加一个条件__________使四边形AECF是平行四边形(只填一个即可).三、解答题(共78分)19.(8分)供电局的电力维修工要到30千米远的郊区进行电力抢修.技术工人骑摩托车先走,15分钟后,抢修车装载着所需材料出发,结果他们同时到达.已知抢修车的速度是摩托车的1.5倍,求这两种车的速度?20.(8分)如图,四边形ABCD是正方形,点G是BC上一点,DE⊥AG于点E,BF∥DE且交AG于点F.(1)求证:AE=BF;(2)当∠BAG=30°,且AB=2时,求EF-FG的值.21.(8分)已知一角的两边与另一个角的两边平行,分别结合下图,试探索这两个角之间的关系,并证明你的结论.(1)如图(1)AB∥EF,BC∥DE,∠1与∠2的关系是:____________.(2)如图(2)AB∥EF,BC∥DE,∠1与∠2的关系是:____________(3)经过上述证明,我们可以得到一个真命题:如果_________,那么____________.(4)若两个角的两边互相平行,且一个角比另一个角的2倍少30°,则这两个角分别是多少度?22.(10分)我国南宋时期数学家秦九昭及古希腊的几何学家海伦对于问题:“已知三角形的三边,如何求三角形的面积”进行了研究,并得到了海伦—秦九昭公式:如果一个三角形的三条边分别为,记,那么三角形的面积为,请用此公式求解:在中,,,,求的面积.23.(10分)(1)分解因式:;(2)化简:.24.(10分)如图,在平面直角坐标系中,已知A(-3,-4),B(0,-2).(1)△OAB绕O点旋转180°得到△OA1B1,请画出△OA1B1,并写出A1,B1的坐标;(2)判断以A,B,A1,B1为顶点的四边形的形状,并说明理由.25.(12分)解下列方程(1);(2);(3).26.如图,矩形放置在平面直角坐标系上,点分别在轴,轴的正半轴上,点的坐标是,其中,反比例函数y=

的图象交交于点.(1)_____(用的代数式表示)(2)设点为该反比例函数图象上的动点,且它的横坐标恰好等于,连结.①若的面积比矩形面积多8,求的值。②现将点绕点逆时针旋转得到点,若点恰好落在轴上,直接写出的值.

参考答案一、选择题(每题4分,共48分)1、B【解析】

根据平行四边形的性质以及平行四边形的判定定理即可作出判断.【详解】解:A、∵在平行四边形ABCD中,OA=OC,OB=OD,

若AE=CF,则OE=OF,

∴四边形DEBF是平行四边形;

B、若DE=BF,没有条件能够说明四边形DEBF是平行四边形,则选项错误;

C、∵在平行四边形ABCD中,OB=OD,AD∥BC,

∴∠ADB=∠CBD,

若∠ADE=∠CBF,则∠EDB=∠FBO,

∴DE∥BF,则△DOE和△BOF中,,∴△DOE≌△BOF,

∴DE=BF,

∴四边形DEBF是平行四边形.故选项正确;

D、∵∠AED=∠CFB,

∴∠DEO=∠BFO,

∴DE∥BF,

在△DOE和△BOF中,,∴△DOE≌△BOF,

∴DE=BF,

∴四边形DEBF是平行四边形.故选项正确.

故选B.【点睛】本题考查了平行四边形的性质以及判定定理,熟练掌握定理是关键.2、D【解析】

先确定直线OA的解析式为y=-2x,然后观察函数图象得到当-2≤x≤-1时,y=kx+b的图象在x轴上方且在直线y=-2x的下方.【详解】解:直线OA的解析式为y=-2x,当-2≤x≤-1时,0≤kx+b≤-2x.故选:D.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.3、D【解析】

先证明四边形ABEF是平行四边形,再证明邻边相等即可得出四边形ABEF是菱形,得出AE⊥BF,OA=OE,OB=OF=BF=6,由勾股定理求出OA,即可得出AE的长.【详解】如图所示:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠AEB,∵∠BAD的平分线交BC于点E,∴∠DAE=∠BAE,∴∠BAE=∠BEA,∴AB=BE,同理可得AB=AF,∴AF=BE,∴四边形ABEF是平行四边形,∵AB=AF,∴四边形ABEF是菱形,∴AE⊥BF,OA=OE,OB=OF=BF=6,∴OA==8,∴AE=2OA=16.故选D.【点睛】本题考查平行四边形的性质与判定、等腰三角形的判定、菱形的判定和性质、勾股定理等知识;熟练掌握平行四边形的性质,证明四边形ABEF是菱形是解决问题的关键.4、B【解析】

在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形;平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形叫做轴对称图形;据此分别对各选项图形加以判断即可.【详解】A:是轴对称图形,但不是中心对称图形,故不符合题意;B:是轴对称图形,也是中心对称图形,故符合题意;C:不是轴对称图形,是中心对称图形,故不符合题意;D:不是轴对称图形,也不是中心对称图形,故不符合题意;故选:B.【点睛】本题主要考查了轴对称图形与中心对称图形的识别,熟练掌握相关概念是解题关键.5、A【解析】

先根据直线y=-3x+b判断出函数图象的增减性,再根据各点横坐标的大小进行判断即可.【详解】∵直线y=−3x+b,k=−3<0,

∴y随x的增大而减小,

又∵−2<−1<1,.故选:.【点睛】本题考查一次函数图象上点的坐标特征,解题的关键是熟练掌握一次函数图象.6、A【解析】

根据零指数幂的意义、分式有意义的条件列出不等式,解不等式即可.【详解】解:由题意得,a-1≠0,a+1≠0,解得,a≠1且a≠-1,故选:A.【点睛】本题考查的是分式有意义的条件、零指数幂,掌握分式有意义的条件是分母不等于零是解题的关键.7、C【解析】

总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】①这50000名学生的数学考试成绩的全体是总体,说法正确;②每个考生是个体,说法错误,应该是每个考生的数学成绩是个体;③1名考生是总体的一个样本,说法错误,应是1名考生的数学成绩是总体的一个样本;④样本容量是1,说法正确;正确的说法共2个.故选C.【点睛】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.8、D【解析】

①利用同角的余角相等,易得∠EDC=∠PDA,再结合已知条件利用SAS可证两三角形全等;②利用①中的全等,可得∠APD=∠CED,结合三角形的外角的性质,易得∠CEP=90°,即可证;③过C作CF⊥DE,交DE的延长线于F,利用②中的∠BEP=90°,利用勾股定理可求CE,结合△DEP是等腰直角三角形,可证△CEF是等腰直角三角形,再利用勾股定理可求EF、CF;⑤在Rt△CDF中,利用勾股定理可求CD2,即是正方形的面积;④连接AC,求出△ACD的面积,然后减去△ACP的面积即可.【详解】解:①∵DP⊥DE,∴∠PDE=90°,∴∠PDC+∠EDC=90°,∵在正方形ABCD中,∠ADC=90°,AD=CD,∴∠PDC+∠PDA=90°,∴∠EDC=∠PDA,在△APD和△CED中∴(SAS)(故①正确);②∵,∴∠APD=∠CED,又∵∠CED=∠CEA+∠DEP,∠APD=∠PDE+∠DEP,∴∠CEA=∠PDE=90°,(故②正确);③过C作CF⊥DE,交DE的延长线于F,∵DE=DP,∠EDP=90°,∴∠DEP=∠DPE=45°,又∵②中∠CEA=90°,CF⊥DF,∴∠FEC=∠FCE=45°,∵,∠EDP=90°,∴∴,∴CF=EF=,∴点C到直线DE的距离为(故③不正确);⑤∵CF=EF=,DE=1,∴在Rt△CDF中,CD2=(DE+EF)2+CF2=,∴S正方形ABCD=CD2=(故⑤正确);④如图,连接AC,∵△APD≌△CED,∴AP=CE=,∴=S△ACD﹣S△ACP=S正方形ABCD﹣×AP×CE=×()﹣××=.(故④不正确).故选:D.【点睛】本题利用了全等三角形的判定和性质、正方形的性质、正方形和三角形的面积公式、勾股定理等知识,综合性比较强,得出,进而结合全等三角形的性质分析是解题关键.9、A【解析】

由直线y=2x与线段AB有公共点,可得出点B在直线上或在直线右下方,利用一次函数图象上点的坐标特征,即可得出关于n的一元一次不等式,解之即可得出n的取值范围即可判断.【详解】∵直线y=2x与线段AB有公共点,∴2n≥3,∴n≥.∵1.4<,∴n的值不可能是1.4.故选A.【点睛】本题考查了一次函数图象上点的坐标特征,用一次函数图象上点的坐标特征,找出关于n的一元一次不等式是解题的关键.10、D【解析】

分别找到各选项的逆命题进行判断即可.【详解】A.的逆命题为若a+b>0,则a>0,b>0,明显错误,没有考虑b为负数且绝对值小于a的情况,B.的逆命题为相等的角都是对顶角,明显错误,C.的逆命题为对应角相等的三角形为全等三角形,这是相似三角形的判定方法,故错误,D.的逆命题为两组对边分别相等的四边形是平行四边形,这是平行四边形的判定,正确.故选D.【点睛】本题考查了真假命题的判定,属于简单题,找到各命题的逆命题是解题关键.11、A【解析】

根据函数图象的纵坐标,可得气温,根据函数图象的增减性,可得答案.【详解】A、由纵坐标看出,这一天中最高气温是24℃,错误,故A符合选项;B、由纵坐标看出最高气温是24℃,最低气温是8℃,温差是24﹣8=16℃,正确,故B不符合选项;C、由函数图象看出,这一天中2时至14时之间的气温在逐渐升高,故C正确;D、由函数图象看出,这一天中0时至2时,14时至24时气温在逐渐降低,故D错误;故选:A.【点睛】考查了函数图象,由纵坐标看出气温,横坐标看出时间是解题关键.12、B【解析】

根据正方形的性质可得∠CAD=45°,根据等腰三角形的性质可得∠ADE的度数,根据∠CDE=90°-∠ADE即可得答案.【详解】∵AC是正方形ABCD的对角线,∴∠CAD=45°,∵AE=AB,AB=AD,∴AE=AD,∴∠ADE=∠AED=67.5°,∵∠ADC=90°,∴∠CDE=∠ADC-∠ADE=90°-67.5°=22.5°.故选B.【点睛】本题考查了正方形的性质及等腰三角形的性质,正方形四边都相等,四个角都为90°,对角线互相垂直平分,并且平分每一组对角.熟练掌握相关性质是解题关键.二、填空题(每题4分,共24分)13、且.【解析】

根据二次根式的性质以及分式的意义,分别得出关于的关系式,然后进一步加以计算求解即可.【详解】根据二次根式的性质以及分式的意义可得:,且,∴且,故答案为:且.【点睛】本题主要考查了二次根式的性质与分式的性质,熟练掌握相关概念是解题关键.14、﹣2(答案不唯一)【解析】试题分析:∵|x|≤1,∴﹣1≤x≤1.∵x为整数,∴x=﹣1,﹣2,﹣1,0,1,2,1.分别代入可知,只有x=﹣2,1时为整数.∴使为整数的x的值是﹣2或1(填写一个即可).15、1【解析】

设DF=a,则AF=3a,AD=1a,设BC和AD之间的距离为h,求出BE=DF=a,根据平行四边形的面积求出ah=8,求出阴影部分的面积=ah,即可得出答案.【详解】设DF=a,则AF=3a,AD=1a,设BC和AD之间的距离为h,∵四边形BACD是平行四边形,∴AD∥BE,AD=BC=1a,BO=OD,∵BE∥AD,∴△BEO≌△DFO,∴BE=DF=a,∵平行四边形ABCD的面积为32,∴1a×h=32,∴ah=8,∴阴影部分的面积S=S△BEO+S△DFO=×(BE+DF)×h=×(a+a)×h=ah=1,故答案为1.【点睛】本题考查了旋转的性质和平行四边形的性质,能求出ah=8是解此题的关键.16、(0,)或(0,-)或(0,-)或(0,-2)【解析】

根据条件可得AC=2,过点C作CD⊥OA,由勾股定理得到OC=,再分以下三种情况求解:①当OP=OC时,可直接得出点P的坐标为(0,)或(0,-);②当PO=PC时,点P在OC的垂直平分线PE上,先求出直线OC的解析式,从而可求出直线PE的解析式,最后可求得P(0,-);③当CO=CP时,根据OP=2|yC|=2×1=2,求得P(0,-2).【详解】解:∵点B坐标是(0,-3),∠OAB=30°,

∴AB=2×3=6,AO=3,

∵点C在线段AB上,是靠近点A的三等分点,

∴AC=2,

过点C作CD⊥OA于D,

∴CD=AC=1,

∴AD=CD=,

∴OD=OA-AD=3-=2,

∴OC=.∵△OCP为等腰三角形,分以下三种情况:

①当OP=OC=时,点P的坐标为(0,)或(0,-);

②当PO=PC时,点P在OC的垂直平分线PE上,其中E为OC的中点,∴点E的坐标为(,-),设直线OC的解析式为y=k1x,将点C(2,-1)代入得k1=-,则可设直线PE的解析式为y=k2x+b,则k1·k2=-1,∴k2=2,∴将点E(,-)代入y=2x+b,得b=-,

∴P(0,−),

③当CO=CP时,OP=2|yC|=2×1=2,

∴P(0,-2),

综上所述,当△OCP为等腰三角形时,点P的坐标为(0,)或(0,-)或(0,-)或(0,-2),

故答案为:(0,)或(0,-)或(0,-)或(0,-2).【点睛】本题考查了等腰三角形的判定和性质,含30°的直角三角形的性质,勾股定理以及一次函数解析式的求法等知识,正确作出辅助线是解题的关键.17、增大【解析】

根据一次函数图象经过一、三、四象限,可以得出>0,b<0,则反比例函数的系数,结合x>0即可得到结论.【详解】∵一次函数图象经过一、三、四象限,∴>0,b<0,∴,∴又x>0,∴反比例函数图象在第四象限,且y随着x的增大而增大,故答案为:增大.【点睛】本题考查了一次函数的图象和性质,反比例函数的图象和性质,掌握一次函数,反比例函数的图象和性质是解题的关键.18、AF=CE(答案不唯一).【解析】

根据平行四边形性质得出AD∥BC,得出AF∥CE,当AF=CE时,四边形AECF是平行四边形;根据有一组对边相等且平行的四边形是平行四边形的判定,可添加AF=CE或FD=EB.根据两组对边分别平行的四边形是平行四边形的定义,可添加AE∥FC.添加∠AEC=∠FCA或∠DAE=∠DFC等得到AE∥FC,也可使四边形AECF是平行四边形.三、解答题(共78分)19、摩托车的速度是40km/h,抢修车的速度是60km/h.【解析】试题分析:设摩托车的是xkm/h,那么抢修车的速度是1.5xkm/h,根据供电局的电力维修工要到30千米远的郊区进行电力抢修.技术工人骑摩托车先走,15分钟后,抢修车装载着所需材料出发,结果他们同时到达可列方程求解.试题解析:设摩托车的是xkm/h,30x=40经检验x=40是原方程的解.40×1.5=60(km/h).摩托车的速度是40km/h,抢修车的速度是60km/h.考点:分式方程的应用.20、(1)证明见解析;(2)EF-FG=-1.【解析】分析:(1)首先根据角与角之间的等量代换得到∠ABF=∠DAE,结合AB=AD,∠AED=∠BFA,利用AAS证明△ABF≌△DAE,即可得到AE=BF;(2)首先求出BF和AE的长度,然后在Rt△BFG中求出BG=2FG,利用勾股定理得到BG2=FG2+BF2,进而求出FG的长,于是可得EF﹣FG的值.详解:(1)∵四边形ABCD是正方形,∴AB=AD,∠BAF+∠DAE=∠BAD=90°.又∵DE⊥AG,BF∥DE,∴∠AED=∠BFA=90°.∵∠BAF+∠ABF=90°,∴∠ABF=∠DAE.在△ABF和△DAE中,,∴△ABF≌△DAE(AAS),∴AE=BF;(2)∵∠BAG=30°,AB=2,∠BEA=90°,∴BF=AB=1,AF=,∴EF=AF﹣AE=AF﹣BF=﹣1.∵BF⊥AG,∠ABG=90°,∠BAG=30°,∴∠FBC=30°,∴BG=2FG,由BG2=FG2+BF2,∴4FG2=FG2+1,∴FG=,∴EF﹣FG=﹣1﹣=﹣1.点睛:本题主要考查了正方形的性质、全等三角形的判定与性质以及勾股定理等知识,解答本题的关键是根据AAS证明△ABF≌△DAE,此题难度一般.21、(1)∠1=∠1,证明见解析;(1)∠1+∠1=180°,证明见解析;(3)一个角的两边与另一个角的两边分别平行,这两个角相等或互补;(4)这两个角分别是30°,30°或70°,110°.【解析】

(1)根据两直线平行,内错角相等,可求出∠1=∠1;

(1)根据两直线平行,内错角相等及同旁内角互补可求出∠1+∠1=180°;

(3)由(1)(1)可得出结论;(4)由(3)可列出方程,求出角的度数.【详解】解:(1)AB∥EF,BC∥DE,∠1与∠1的关系是:∠1=∠1

证明:∵AB∥EF

∴∠1=∠BCE

∵BC∥DE

∴∠1=∠BCE

∴∠1=∠1.

(1)AB∥EF,BC∥DE.∠1与∠1的关系是:∠1+∠1=180°.

证明:∵AB∥EF

∴∠1=∠BCE

∵BC∥DE

∴∠1+∠BCE=180°

∴∠1+∠1=180°.

(3)经过上述证明,我们可以得到一个真命题:如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.

(4)解:设其中一个角为x°,列方程得x=1x-30或x+1x-30=180,

故x=30或x=70,

所以1x-30=30或110,

答:这两个角分别是30°,30°或70°,110°.【点睛】本题考查平行线的性质,解题的关键是注意数形结合思想的应用,注意两直线平行,内错角相等与两直线平行,同旁内角互补定理的应用.22、【解析】

利用阅读材料,先计算出p的值,然后根据海伦公式计算△ABC的面积;【详解】解:,,,,.【点睛】考查了二次根式的应用,解题的关键是代入后正确的运算,难度不大.23、(1);(2).【解析】

(1)先提取公因式,再根据完全平方公式分解即可;(2)原式通分并利用分式的加法法则计算即可得到结果【详解】解:(1)==;(2)====.【点睛】本题考查分解因式和分式的加法运算,能灵活运用知识点进行计算和化简是解题的关键.24、(1)画图见解析,A1(3,4),B1(0,2);(2)以A、B、A1、B1为顶点的四边形为平行四边形,理由见解析.【解析】

(1)延长AO至A1,A1O=AO,延长BO至B1,B1O=AO,顺次连接A1B1O,再根据关于原点对称的点的坐标关系,写出A1,B1的坐标.(2)由两组对边相等,可知四边形是平行

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论