四川省通江县2024届八年级数学第二学期期末综合测试模拟试题含解析_第1页
四川省通江县2024届八年级数学第二学期期末综合测试模拟试题含解析_第2页
四川省通江县2024届八年级数学第二学期期末综合测试模拟试题含解析_第3页
四川省通江县2024届八年级数学第二学期期末综合测试模拟试题含解析_第4页
四川省通江县2024届八年级数学第二学期期末综合测试模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省通江县2024届八年级数学第二学期期末综合测试模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.化简:()A.2 B.-2 C.4 D.-42.一组数据为4,5,5,6,若添加一个数据5,则发生变化的统计量是()A.平均数 B.众数 C.中位数 D.方差3.如图,在边长为10的菱形ABCD中,P为CD上一点,BP⊥CD,连接AP,若DP=4,则AP的长为()A.241 B.234 C.144.如图,点,在反比例函数的图象上,连结,,以,为边作,若点恰好落在反比例函数的图象上,此时的面积是()A. B. C. D.5.以下各组数中,能作为直角三角形的三边长的是A.6,6,7 B.6,7,8 C.6,8,10 D.6,8,96.能够判定一个四边形是平行四边形的条件是()A.一组对角相等 B.两条对角线互相平分C.两条对角线互相垂直 D.一对邻角的和为180°7.下列调查中,最适合采用抽样调查的是()A.对某地区现有的16名百岁以上老人睡眠时间的调查B.对“神舟十一号”运载火箭发射前零部件质量情况的调查C.对某校九年级三班学生视力情况的调查D.对某市场上某一品牌电脑使用寿命的调查8.下列各式中正确的是()A. B. C.=a+b D.=-a-b9.下列各式:(1﹣x),,,,其中分式共有()A.1个 B.2个 C.3个 D.4个10.下列式子一定是二次根式的是()A. B. C. D.二、填空题(每小题3分,共24分)11.若正多边形的一个外角等于36°,那么这个正多边形的边数是________.12.在周长为的平行四边形中,相邻两条边的长度比为,则这个平行四边形的较短的边长为________.13.已知点P(-2,1),则点P关于x轴对称的点的坐标是__.14.如图,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8,在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,则D点的坐标是.15.一组数据﹣1,0,1,2,3的方差是_____.16.如图:使△AOB∽△COD,则还需添加一个条件是:.(写一个即可)17.二次三项式是一个完全平方式,则k=_______.18.如图,直线、、、互相平行,直线、、、互相平行,四边形面积为,四边形面积为,则四边形面积为__________.三、解答题(共66分)19.(10分)为推动阳光体育活动的广泛开展,引导学生积极参加体育锻炼,学校准备购买一批运动鞋供学生借用.现从各年级随机抽取了部分学生的鞋号,绘制了如下的统计图①和图②,请根据图中提供的信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为人,图①中的m的值为,图①中“38号”所在的扇形的圆心角度数为;(2)本次调查获取的样本数据的众数是,中位数是;(3)根据样本数据,若学校计划购买200双运动鞋,建议购买36号运动鞋多少双?20.(6分)某班同学进行数学测验,将所得成绩(得分取整数)进行整理分成五组,并绘制成频数直方图(如图),请结合直方图提供的信息,回答下列问题:(1)该班共有多少名学生参加这次测验?(2)求1.5~2.5这一分数段的频数是多少,频率是多少?(3)若80分以上为优秀,则该班的优秀率是多少?21.(6分)已知:如图,四边形ABCD中,AD∥BC,AD=CD,E是对角线BD上一点,且EA=EC.(1)求证:四边形ABCD是菱形;(2)如果BE=BC,且∠CBE:∠BCE=2:3,求证:四边形ABCD是正方形.22.(8分)如图,在平面直角坐标系中,四边形OABC的顶点O是坐标原点,点A在第一象限,点C在第四象限且OC=5,点B在x轴的正半轴上且OB=6,∠OAB=90°且OA=AB.

(1)求点A和点B的坐标;

(2)点P是线段OB上的一个动点(点P不与点O,B重合),过点P的直线l与y轴平行,直线l交边OA成边AB于点Q,交边OC或边CB于点R,设点P的横坐标为t,线段QR的长度为m,已知t=4时,直线l恰好过点C,当0<t<3时,求m关于t的函数关系式.23.(8分)如图,方格纸中每个小方格都是长为1个单位的正方形.若学校位置的坐标为A(1,2),解答以下问题:(1)请在图中建立适当的直角坐标系,并写出图书馆B位置的坐标;(2)若体育馆位置的坐标为C(-3,3),请在坐标系中标出体育馆的位置,并顺次连接学校、图书馆、体育馆,得到△ABC,求△ABC的面积.24.(8分)如图,在矩形ABCD中,E、F分别是边AB、CD的中点,连接AF,CE(1)求证:△BEC≌△DFA;(2)求证:四边形AECF是平行四边形.25.(10分)解方程:(1);(2).26.(10分)如图,DB∥AC,DE∥BC,DE与AB交于点F,E是AC的中点.(1)求证:F是AB的中点;(2)若要使DBEA是矩形,则需给△ABC添加什么条件?并说明理由.

参考答案一、选择题(每小题3分,共30分)1、A【解析】

根据二次根式的性质解答.【详解】解:.故选:A.【点睛】本题主要考查了根据二次根式的性质化简.解题的关键是掌握二次根式的性质.2、D【解析】

依据的定义和公式分别计算新旧两组数据的平均数、中位数、众数、方差求解即可.【详解】解:原数据的4,5,5,6的平均数为=5,中位数为5,众数为5,方差为×[(4-5)2+(5-5)2×2+(6-5)2]=0.5

新数据4,5,5,5,6的平均数为=5,中位数为5,众数为5,方差为×[(4-5)2+(5-5)2×3+(6-5)2]=0.4;

∴添加一个数据5,方差发生变化,

故选:D.【点睛】本题主要考查的是众数、中位数、方差、平均数,熟练掌握相关概念和公式是解题的关键.3、A【解析】

在Rt△BCP中利用勾股定理求出PB,在Rt△ABP中利用勾股定理求出PA即可.【详解】∵四边形ABCD是菱形,∴AB=BC=CD=AD=10,AB∥CD∵PD=4,∴PC=6,∵PB⊥CD,∴PB⊥AB,∴∠CPB=∠ABP=90°,在Rt△PCB中,∵∠CPB=90°,PC=6,BC=10,∴PB=BC2在Rt△ABP中,∵∠ABP=90°,AB=10,PB=8,∴PA=AB2故选:A【点睛】此题考查菱形的性质,勾股定理,解题关键在于求出PB.4、A【解析】

连接AC,BO交于点E,作AG⊥x轴,CF⊥x轴,设点A(a,),点C(m,)(a<0,m>0),由平行四边形的性质和中点坐标公式可得点B[(a+m),(+)],把点B坐标代入解析式可求a=-2m,由面积和差关系可求解.【详解】解:如图,连接AC,BO交于点E,作AG⊥x轴,CF⊥x轴,设点A(a,),点C(m,)(a<0,m>0),∵四边形ABCO是平行四边形,∴AC与BO互相平分,∴点E(),∵点O坐标(0,0),∴点B[(a+m),(+)].∵点B在反比例函数y=(x<0)的图象上,∴,∴a=-2m,a=m(不合题意舍去),∴点A(-2m,),∴四边形ACFG是矩形,∴S△AOC=(+)(m+2m)--1=,∴▱OABC的面积=2×S△AOC=3.故选:A.【点睛】本题考查了反比例函数图象上点的坐标特征,平行四边形的性质,中点坐标公式,解决问题的关键是数形结合思想的运用.5、C【解析】

分别把选项中的三边平方后,根据勾股定理逆定理即可判断能否构成直角三角形.【详解】解:A、,不能构成直角三角形;B、,不能构成直角三角形;C、,能构成直角三角形;D、,不能构成直角三角形;故选C.【点睛】考查了勾股数的判定方法,比较简单,只要对各组数据进行检验,看各组数据是否符合勾股定理的逆定理即可.6、B【解析】试题分析:平行四边形的五种判定方法分别是:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形.根据平行四边形的判定方法选择即可.解:根据平行四边形的判定可知B正确.故选B.【点评】本题考查了平行四边形的判定,在应用判定定理判定平行四边形时,应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,避免混用判定方法.7、D【解析】试题分析:A.人数不多,容易调查,适合普查.B.对“神舟十一号”运载火箭发射前零部件质量情况的调查必须准确,故必须普查;C.班内的同学人数不多,很容易调查,因而采用普查合适;D.数量较大,适合抽样调查;故选D.考点:全面调查与抽样调查.8、D【解析】

根据分式的性质:分子分母同时扩大或缩小相同倍数,值不变,和分式的通分即可解题.【详解】A.,故A错误,B.,故B错误C.a+b,这里面分子不能用平方差因式分解,D.=-a-b,正确故选D.【点睛】本题考查了分式的运算性质,属于简单题,熟悉概念是解题关键.9、A【解析】

分式即形式,且分母中要有字母,且分母不能为0.【详解】本题中只有第五个式子为分式,所以答案选择A项.【点睛】本题考查了分式的概念,熟悉理解定义是解决本题的关键.10、C【解析】

根据二次根式的定义:形如(a≥0)的式子叫做二次根式,逐一判断即可.【详解】解:A.当x=0时,不是二次根式,故本选项不符合题意;B.当x=-1时,不是二次根式,故本选项不符合题意;C.无论x取何值,,一定是二次根式,故本选项符合题意;D.当x=0时,不是二次根式,故本选项不符合题意.故选C.【点睛】此题考查的是二次根式的判断,掌握二次根式的定义是解决此题的关键.二、填空题(每小题3分,共24分)11、十【解析】

根据正多边形的外角和为360°,除以每个外角的度数即可知.【详解】解:∵正多边形的外角和为360°,∴正多边形的边数为,故答案为:十.【点睛】本题考查了正多边形的外角与边数的关系,解题的关键是熟知正多边形外角和等于每个外角的度数与边数的乘积.12、1【解析】

由已知可得相邻两边的和为9,较短边长为xcm,则较长边长为2x,解方程x+2x=9即可.【详解】因为平行四边形周长为18cm,所以相邻两边的长度之和为9cm.设较短边长为xcm,则较长边长为2x,所以x+2x=9,解得x=1.故答案为1.【点睛】本题主要考查了平行四边形的性质,解决平行四边形周长问题一定要熟记平行四边形周长等于两邻边和的2倍.13、(-2,-1)【解析】

根据关于x轴对称的点的横坐标相等,纵坐标互为相反数,可得答案.【详解】点P(﹣2,1),则点P关于x轴对称的点的坐标是(﹣2,﹣1),故答案是:(﹣2,﹣1).【点睛】考查了关于x轴对称的对称点,利用关于x轴对称的点的横坐标相等,纵坐标互为相反数是解题关键.14、(0,5)【解析】

试题分析:先由矩形的性质得到AB=OC=8,BC=OA=10,再根据折叠的性质得AE=AO=10,DE=DO,在Rt△ABE中,利用勾股定理可计算出BE=6,则CE=BC﹣BE=4,设OD=x,则DE=x,DC=8﹣x,在Rt△CDE中根据勾股定理有x2=(8﹣x)2+42,解方程求出x,即可确定D点坐标.解:∵四边形ABCD为矩形,∴AB=OC=8,BC=OA=10,∵纸片沿AD翻折,使点O落在BC边上的点E处,∴AE=AO=10,DE=DO,在Rt△ABE中,AB=8,AE=10,∴BE=6,∴CE=BC﹣BE=4,设OD=x,则DE=x,DC=8﹣x,在Rt△CDE中,∵DE2=CD2+CE2,∴x2=(8﹣x)2+42,∴x=5,∴D点坐标为(0,5).故答案为(0,5).15、1【解析】这组数据的平均数为:(-1+1+0+1+3)÷5=1,所以方差=[(-1-1)1+(0-1)1+(1-1)1+(1-1)1+(3-1)1]=1.16、∠A=∠C(答案不唯一).【解析】

添加条件是∠A=∠C,根据相似三角形的判定(有两角对应相等的两三角形相似)证明即可.【详解】添加的条件是:∠A=∠C,理由是:∵∠A=∠C,∠DOC=∠BOA,∴△AOB∽△COD,故答案为:∠A=∠C.本题答案不唯一.17、±6【解析】

根据完全平方公式的展开式,即可得到答案.【详解】解:∵是一个完全平方式,∴;故答案为:.【点睛】本题考查了完全平方公式,解题的关键是掌握完全平方公式的展开式.18、1【解析】

由平行四边形的性质可得S△EHB=S△EIH,S△AEF=S△EFJ,S△DFG=S△FKG,S△GCH=S△GHL,由面积和差关系可求四边形IJKL的面积.【详解】解:∵AB∥IL,IJ∥BC,∴四边形EIHB是平行四边形,∴S△EHB=S△EIH,同理可得:S△AEF=S△EFJ,S△DFG=S△FKG,S△GCH=S△GHL,∴四边形IJKL面积=四边形EFGH面积−(四边形ABCD面积−四边形EFGH面积)=11−(18−11)=1,故答案为:1.【点睛】本题考查了平行四边形的判定与性质,由平行四边形的性质得出S△EHB=S△EIH是解题的关键.三、解答题(共66分)19、(1)40,15,1°;(2)35,1;(3)50双.【解析】

(1)根据条形统计图求出总人数即可;由扇形统计图以及单位1,求出m的值即可;用“38号”的百分比乘以10°,即可得圆心角的度数;(2)找出出现次数最多的即为众数,将数据按照从小到大顺序排列,求出中位数即可;(3)根据题意列出算式,计算即可得到结果.【详解】(Ⅰ)本次接受随机抽样调查的学生人数为6+12+10+8+4=40,图①中m的值为100-30-25-20-10=15;10°×10%=1°;故答案为:40,15,1°.(2)∵在这组样本数据中,35出现了12次,出现次数最多,∴这组样本数据的众数为35;∵将这组样本数据从小到大得顺序排列,其中处于中间的两个数都为1,∴中位数为(1+1)÷2=1;故答案为:35,1.(3)∵在40名学生中,鞋号为1的学生人数比例为25%,∴由样本数据,估计学校各年级中学生鞋号为1的人数比例约为25%,则计划购买200双运动鞋,1号的双数为:200×25%=50(双).【点睛】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.20、(1)50;(2)频数:10频率:0.2;(3)优秀率:36%【解析】

(1)将统计图中的数据进行求和计算可得答案;(2)由图可得频数,根据频率等于频数除以总数进行计算可得答案;(3)根据直方图可得80分以上的优秀人数,再进一步计算百分比.【详解】解:(1)根据题意,该班参加测验的学生人数为4+10+18+12+6=50(人),答:该班共有50名学生参加这次测验;(2)由图可得:1.5~2.5这一分数段的频数为10,频率为10÷50=0.2;(3)由图可得:该班的优秀人数为12+6=18人,则该班的优秀率为:18÷50×100%=36%,答:该班的优秀率是36%.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.21、(1)证明见解析;(2)证明见解析.【解析】

(1)首先证得△ADE≌△CDE,由全等三角形的性质可得∠ADE=∠CDE,由AD∥BC可得∠ADE=∠CBD,易得∠CDB=∠CBD,可得BC=CD,易得AD=BC,利用平行线的判定定理可得四边形ABCD为平行四边形,由AD=CD可得四边形ABCD是菱形;(2)由BE=BC可得△BEC为等腰三角形,可得∠BCE=∠BEC,利用三角形的内角和定理可得∠CBE=180×=45°,易得∠ABE=45°,可得∠ABC=90°,由正方形的判定定理可得四边形ABCD是正方形.【详解】(1)在△ADE与△CDE中,,∴△ADE≌△CDE,∴∠ADE=∠CDE,∵AD∥BC,∴∠ADE=∠CBD,∴∠CDE=∠CBD,∴BC=CD,∵AD=CD,∴BC=AD,∴四边形ABCD为平行四边形,∵AD=CD,∴四边形ABCD是菱形;(2)∵BE=BC,∴∠BCE=∠BEC,∵∠CBE:∠BCE=2:3,∴∠CBE=180×=45°,∵四边形ABCD是菱形,∴∠ABE=45°,∴∠ABC=90°,∴四边形ABCD是正方形.22、(1)A点坐标为(3,3),B点坐标为(6,0);

(2)m=t(0<t<3).【解析】

(1)由题意得到B点坐标为(6,0),根据等腰直角三角形的性质即可解决问题;

(2)首先求出直线OA、OB、OC、BC的解析式.进而求出P、Q的坐标即可解决问题.【详解】(1)∵OB=6,

∴B点坐标为(6,0),过点A作x轴的垂线AM,∵∠OAB=90°且OA=AB,

∴△AOB为等腰直角三角形,

∴OM=BM=AM=OB=3,

∴A点坐标为(3,3);

(2)作CN⊥x轴于N,如图,

∵t=4时,直线l恰好过点C,

∴ON=4,

在Rt△OCN中,CN==3,

∴C点坐标为(4,−3),

设直线OC的解析式为y=kx(k≠0),

把C(4,−3)代入得4k=−3,解得k=,

∴直线OC的解析式为y=x,

设直线OA的解析式为y=ax(a≠0),

把A(3,3)代入得3a=3,解得a=1,

∴直线OA的解析式为y=x

∵P(t,0)(0<t<3),

∴Q(t,t),R(t,t),

∴QR=t−(t)=t,

即m=t(0<t<3).【点睛】本题考查四边形综合问题,解题的关键是掌握等腰直角三角形的性质、待定系数法求解析式.23、(1)(-3,-2);(2)1.

【解析】

(1)利用点A的坐标画出直角坐标系;根据点的坐标的意义描出点B;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论