2024年重庆市长寿区川维片区八年级数学第二学期期末复习检测试题含解析_第1页
2024年重庆市长寿区川维片区八年级数学第二学期期末复习检测试题含解析_第2页
2024年重庆市长寿区川维片区八年级数学第二学期期末复习检测试题含解析_第3页
2024年重庆市长寿区川维片区八年级数学第二学期期末复习检测试题含解析_第4页
2024年重庆市长寿区川维片区八年级数学第二学期期末复习检测试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年重庆市长寿区川维片区八年级数学第二学期期末复习检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图,平行四边形ABCD中,E是AB上一点,DE、CE分别是∠ADC、∠BCD的平分线,若AD=5,DE=6,则平行四边形的面积为()A.96 B.48 C.60 D.302.如图,在□ABCD中,点E、F分别在边AB、DC上,下列条件不能使四边形EBFD是平行四边形的条件是()A.DE=BF B.AE=CF C.DE∥FB D.∠ADE=∠CBF3.一名射击运动员连续打靶8次,命中的环数如图所示,则命中环数的众数与中位数分别为(

)A.9环与8环 B.8环与9环 C.8环与8.5环 D.8.5环与9环4.某班5位学生参加中考体育测试的成绩(单位:分)分别是:50、45、36、48、50,则这组数据的众数是()A.36 B.45 C.48 D.505.多项式与多项式的公因式是()A. B. C. D.6.直角三角形的两直角边长分别为6和8,则斜边上的中线长是()A.10 B.2.5 C.5 D.87.20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x人,女生有y人,根据题意,列方程组正确的是()A. B.C. D.8.如果一个多边形的内角和是外角和的3倍,那么这个多边形是()A.四边形 B.六边形 C.八边形 D.十边形9.下列各式由左到右的变形中,属于因式分解的是()A. B.C. D.10.下列四个选项中,关于一次函数y=x-2的图象或性质说法错误的是A.y随x的增大而增大 B.经过第一,三,四象限C.与x轴交于-2,0 D.与y轴交于0,-211.下列选项中,能使分式值为的的值是()A. B. C.或 D.12.如图,在中,对角线,交于点.若,,,则的周长为()A. B. C. D.二、填空题(每题4分,共24分)13.按一定规律排列的一列数:,,3,,,,…那么第9个数是____________.14.多项式x2+mx+5因式分解得(x+5)(x+n),则m=_____,n=_____.15.下图是利用平面直角坐标系画出的老北京一些地点的示意图,这个坐标系分别以正东和正北方向为x轴和y轴的正方向,如果表示右安门的点的坐标为(-2,-3),表示朝阳门的点的坐标为(3,2),那么表示西便门的点的坐标为___________________.16.如图,1角硬币边缘镌刻的是正九边形,则这个正九边形每个内角的度数是________.17.某中学规定:学生的学期体育综合成绩满分为100分,其中,期中考试成绩占40%,期末考试成绩占60%,小海这个学期的期中、期末成绩(百分制)分别是80分、90分,则小海这个学期的体育综合成绩是分.18._____.三、解答题(共78分)19.(8分)如图,在△ABC中,CF⊥AB于点F,BE⊥AC于点E,M为BC的中点连接ME、MF、EF.(1)求证:△MEF是等腰三角形;(2)若∠A=,∠ABC=50°,求∠EMF的度数.20.(8分)如图1,两个全等的直角三角板ABC和DEF重叠在一起,其中∠ACB=∠DFE=90°,∠A=60°,AC=1,固定△ABC,将△DEF沿线段AB向右平移(即点D在线段AB上),回答下列问题:(1)如图2,连结CF,四边形ADFC一定是形.(2)连接DC,CF,FB,得到四边形CDBF.①如图3,当点D移动到AB的中点时,四边形CDBF是形.其理由?②在△DEF移动过程中,四边形CDBF的形状在不断改变,但它的面积不变化,其面积为.21.(8分)如图,在长方形中,为平面直角坐标系的原点,点在轴上,点在轴上,点在第一象限内,点从原点出发,以每秒个单位长度的速度沿着的路线移动(即沿着长方形的边移动一周).(1)分别求出,两点的坐标;(2)当点移动了秒时,求出点的坐标;(3)在移动过程中,当三角形的面积是时,求满足条件的点的坐标及相应的点移动的时间.22.(10分)如图,平面直角坐标系中,点在轴上,点在轴上.(1)求直线的解析式;(2)若轴上有一点使得时,求的面积.23.(10分)如图1,将矩形纸片ABCD沿对角线BD向上折叠,点C落在点E处,BE交AD于点F.(1)求证:BF=DF;(2)如图2,过点D作DG∥BE交BC于点G,连接FG交BD于点O,若AB=6,AD=8,求FG的长.24.(10分)小张是个“健步走”运动爱好者,他用手机软件记录了近阶段每天健步走的步数,并将记录结果绘制成了如下统计表:求小张近阶段平均每天健步走的步数.25.(12分)为了解高中学生每月用掉中性笔笔芯的情况,随机抽查了30名高中学生进行调查,并将调查的数据制成如下的表格:月平均用中性笔笔芯(根)456789被调查的学生数749523请根据以上信息,解答下列问题:(1)被调查的学生月平均用中性笔笔芯数大约________根;(2)被调查的学生月用中性笔笔芯数的中位数为________根,众数为________根;(3)根据样本数据,若被调查的高中共有1000名学生,试估计该校月平均用中性笔笔芯数9根的约多少人?26.某商店分两次购进A.B两种商品进行销售,两次购进同一种商品的进价相同,具体情况如下表所示:(1)求A、B两种商品每件的进价分别是多少元?(2)商场决定A种商品以每件30元出售,B种商品以每件100元出售.为满足市场需求,需购进A、B两种商品共1000件,且A种商品的数量不少于B种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.

参考答案一、选择题(每题4分,共48分)1、B【解析】试题解析:过点D作DF⊥AB于点F,

∵DE、CE分别是∠ADC、∠BCD的平分线,

∴∠ADE=∠CDE,∠DCE=∠BCE,

∵四边形ABCD是平行四边形,

∴AB∥DC,AD=BC=5,

∠CDE=∠DEA,∠DCE=∠CEB,

∴∠ADE=∠AED,∠CBE=∠BEC,

∴DA=AE=5,BC=BE=5,

∴AB=10,

则DF2=DE2-EF2=AD2-AF2,

故62-FE2=52-(5-EF)2,

解得:EF=3.6,

则DE==4.8,

故平行四边形ABCD的面积是:4.8×10=1.

故选B.2、A【解析】

根据平行四边形的性质可得AB∥CD,添加DE=BF后,满足一组对边平行,另一组对边相等,不符合平行四边形的判定方法,进而可判断A项;根据平行四边形的性质可得AB∥CD,AB=CD,进一步即得BE=DF,根据一组对边平行且相等的四边形是平行四边形即可判断B项;根据平行四边形的性质可得AB∥CD,进而根据平行四边形的定义可判断C项;根据平行四边形的性质可证明△ADE≌△CBF,进而可得AE=CF,DE=BF,然后根据两组对边相等的四边形是平行四边形即可判断D项.【详解】解:A、∵四边形ABCD是平行四边形,∴AB∥CD,由DE=BF,不能判定四边形EBFD是平行四边形,所以本选项符合题意;B、∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵AE=CF,∴BE=DF,∴四边形EBFD是平行四边形,所以本选项不符合题意;C、∵四边形ABCD是平行四边形,∴AB∥CD,∵DE∥FB,∴四边形EBFD是平行四边形,所以本选项不符合题意;D、∵四边形ABCD是平行四边形,∴∠A=∠C,AD=CB,AB=CD,∵∠ADE=∠CBF,∴△ADE≌△CBF(ASA),∴AE=CF,DE=BF,∴BE=DF,∴四边形EBFD是平行四边形,所以本选项不符合题意.故选:A.【点睛】本题考查了平行四边形的性质和判定以及全等三角形的判定和性质,属于常考题型,熟练掌握平行四边形的判定和性质是解本题的关键.3、C【解析】

根据众数的定义找出出现次数最多的数;根据中位数的定义求出最中间两个数的平均数即可.【详解】根据统计图可得:8出现了3次,出现的次数最多,则众数是8;∵共有8个数,∴中位数是第4和1个数的平均数,∴中位数是(8+9)÷2=8.1.故选C.【点睛】本题考查了众数和中位数,用到的知识点是众数和中位数的定义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),众数是一组数据中出现次数最多的数,注意众数不止一个.4、D【解析】

根据众数的定义,找出这组数据中出现次数最多的数,即可求出答案.【详解】解:在这组数据50、45、36、48、50中,50出现了2次,出现的次数最多,则这组数据的众数是50,故选D.【点睛】考查了众数,掌握众数的定义是本题的关键,众数是一组数据中出现次数最多的数.5、A【解析】试题分析:把多项式分别进行因式分解,多项式=m(x+1)(x-1),多项式=,因此可以求得它们的公因式为(x-1).故选A考点:因式分解6、C【解析】

已知直角三角形的两条直角边,根据勾股定理即可求斜边的长度,根据斜边中线长为斜边长的一半即可解题.【详解】已知直角三角形的两直角边为6、8,

则斜边长为=10,

故斜边的中线长为×10=5,

故选:C.【点睛】考查了勾股定理在直角三角形中的运用,考查了斜边中线长为斜边长的一半的性质,本题中正确的运用勾股定理求斜边的长是解题的关键.7、D【解析】试题分析:要列方程(组),首先要根据题意找出存在的等量关系.本题等量关系为:①男女生共20人;②男女生共植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.据此列出方程组:.故选D.考点:由实际问题抽象出二元一次方程组.8、C【解析】设这个多边形是n边形,根据题意得:(n–2)•110°=3×360°,解得:n=1.故选C.9、C【解析】

根据因式分解的定义,直接判断是否是因式分解即可.【详解】解:A.,属于整式乘法,单项式乘多项式,故此选项不符合题意;B.,等式左右两边都有整式加减的形式,故此选项不符合题意;C.,用提公因式法将多项式转化成整式乘法的形式,属于因式分解,故此选项正确;D.,等式左右两边都有整式加减的形式,故此选项不符合题意;故选:C【点睛】本题主要考查整式的因式分解的意义,熟记因式分解的意义是解决此题的关键,还要注意,必须是整式.10、C【解析】

根据一次函数的图象和性质,判断各个选项中的说法是否正确即可.【详解】解:∵y=x−2,k=1,∴该函数y随x的增大而增大,故选项A正确,该函数图象经过第一、三、四象限,故选项B正确,与x轴的交点为(2,0),故选项C错误,与y轴的交点为(0,−2),故选项D正确,故选:C.【点睛】本题考查一次函数的图象和性质,解答本题的关键是明确题意,利用一次函数的性质解答.11、D【解析】

根据分子等于0,且分母不等于0列式求解即可.【详解】由题意得,解得x=-1.故选D.【点睛】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:①分子的值为0,②分母的值不为0,这两个条件缺一不可.12、B【解析】

根据平行四边形的性质进行计算即可.【详解】解:在中,BO=BD=,CO=AC=2,∴的周长为:B0+CO+BC=+2+3=7.5故答案选:B【点睛】本题考查平行四边形的性质,熟练掌握平行四边形的性质和计算法则是解题关键.二、填空题(每题4分,共24分)13、.【解析】

先把这一列数都写成的形式,再观察这列数,可得到被开方数的规律,进而得到答案.【详解】解:∵3=,=,=∴这一列数可变形为:,,,,,,…,由此可知:这一列数的被开方数都是3的倍数,第n个数的被开方数是3n.∴第9个数是:=

故答案为:.【点睛】此题考查了数字的变化规律,从被开方数考虑求解是解题的关键,难点在于二次根式的变形.14、61【解析】

将(x+5)(x+n)展开,得到,使得x2+(n+5)x+5n与x2+mx+5的系数对应相等即可.【详解】解:∵(x+5)(x+n)=x2+(n+5)x+5n,∴x2+mx+5=x2+(n+5)x+5n.∴.故答案为:6;1.15、(-3,1)【解析】

根据右安门的点的坐标可以确定直角坐标系中原点在正阳门,建立直角坐标系即可求解.【详解】根据右安门的点的坐标为(−2,−3),可以确定直角坐标系中原点在正阳门,∴西便门的坐标为(−3,1),故答案为(−3,1);【点睛】此题考查坐标确定位置,解题关键在于建立直角坐标系.16、140°【解析】

先根据多边形内角和定理:求出该多边形的内角和,再求出每一个内角的度数.【详解】解:该正九边形内角和=180°×(9-2)=1260°,

则每个内角的度数=.

故答案为:140°.【点睛】本题主要考查了多边形的内角和定理:180°•(n-2),比较简单,解答本题的关键是直接根据内角和公式计算可得内角和.17、1【解析】

利用加权平均数的公式直接计算.用80分,90分分别乘以它们的百分比,再求和即可.【详解】小海这学期的体育综合成绩=(80×40%+90×60%)=1(分).故答案为1.18、【解析】

原式化为最简二次根式,合并即可得到结果.【详解】解:原式=+2=3.故答案为3【点睛】此题考查了二次根式的加减法,熟练掌握运算法则是解本题的关键.三、解答题(共78分)19、(1)见解析;(2)∠EMF=40°【解析】

(1)易得△BCE和△BCF都是直角三角形,根据直角三角形斜边上的中线等于斜边的一半可得ME=MF=BC,即可得证;(2)首先根据三角形内角和定理求出∠ACB=60°,然后由(1)可知MF=MB,ME=MC,利用等边对等角可求出∠MFB=50°,∠MEC=60°,从而推出∠BMF和∠CME的度数,即可求∠EMF的度数.【详解】(1)∵CF⊥AB于点F,BE⊥AC于点E,∴△BCE和△BCF为直角三角形∵M为BC的中点∴ME=BC,MF=BC∴ME=MF即△MEF是等腰三角形(2)∵∠A=70°,∠ABC=50°,∴∠ACB=180°-70°-50°=60°由(1)可知MF=MB,ME=MC,∴∠MFB=∠ABC=50°,∠MEC=∠ACB=60°,∴∠BMF=180°-2×50°=80°,∠CME=180°-2×60°=60°∴∠EMF=180°-∠BMF-∠CME=180°-80°-60°=40°【点睛】本题考查了等腰三角形的判定与角度计算,熟练掌握直角三角形斜边上的中线等于斜边的一半是解题的关键.20、(1)平行四边;(2)①见解析;②【解析】

(1)根据平移的性质即可证明四边形ADFC是平行四边形;(2)①根据菱形的判定定理即可求解;②根据四边形CDBF的面积=DF×BC即可求解.【详解】解:(1)∵平移∴AC∥DF,AC=DF∴四边形ADFC是平行四边形故答案为平行四边(2)①∵△ACB是直角三角形,D是AB的中点∴CD=AD=BD∵AD=CF,AD∥FC∴BD=CF∵AD∥FC,BD=CF∴四边形CDBF是平行四边形又∵CD=BD∴四边形CDBF是菱形.②∵∠A=60°,AC=1,∠ACB=90°∴BC=,DF=1∵四边形CDBF的面积=DF×BC∴四边形CDBF的面积=【点睛】此题主要考查三角形的平移,解题的关键是熟知菱形的判定与性质.21、(1)点,点;(2)点;(3)①P(0,5),移动时间为秒;②P(,6),移动时间为秒;③P(4,1),移动时间为:秒;④P(,0),移动时间为:秒【解析】

(1)根据点A,点C的位置即可解答;(2)根据点P的速度及移动时间即可解答;(3)对点P的位置分类讨论,根据三角形的面积计算公式即可解答.【详解】解:(1)点在轴上,点在轴上,∴m+2=0,n-1=0,∴m=-2,n=1.∴点,点(2)由(1)可知:点,点当点移动了秒时,移动的路程为:4×2=8,∴此时点P在CB上,且CP=2,∴点.(3)①如图1所示,当点P在OC上时,∵△OBP的面积为10,∴,即,解得OP=5,∴点P的坐标为(0,5),运动时间为:(秒)②如图2所示,当点P在BC上时,∵△OBP的面积为10,∴,即,解得BP=,∴CP=∴点P的坐标为(,6),运动时间为:(秒)③如图3所示,当点P在AB上时,∵△OBP的面积为10,∴,即,解得BP=5,∴AP=1∴点P的坐标为(4,1),运动时间为:(秒)④如图4所示,当点P在OA上时,∵△OBP的面积为10,∴,即,解得OP=,∴点P的坐标为(,0),运动时间为:(秒)综上所述:①P(0,5),移动时间为秒;②P(,6),移动时间为秒;③P(4,1),移动时间为:秒;④P(,0),移动时间为:秒.【点睛】本题考查了平面直角坐标系中的坐标及动点运动问题,解题的关键是熟知平面直角坐标系中点的特点及动点的运动情况.22、(1);(2)的面积为或【解析】

(1)根据点A,B的坐标,利用待定系数法可求出直线AB的解析式;(2)设点P的坐标为(t,0),分点P在原点左侧及点P在原点右侧两种情况考虑:①若点P在x轴上原点左侧,当PB=AP时,∠APO=2∠ABO,在Rt△APO中,利用勾股定理可求出t的值,进而可得出BP的长,再利用三角形的面积公式可求出△ABP的面积;②若点P在x轴上原点右侧,由对称性,可得出点P′的坐标,进而可得出BP′的长,再利用三角形的面积公式可求出△ABP′的面积.综上,此题得解【详解】解:(1)设直线的解析式为,则:解得:∴所求直线的解析式为:(2)设点为①若点在轴上原点左侧,当时,在中,,,∴解得:∴∴②若点在轴上原点右侧,由对称性,得点为,此时,∴综合上述,的面积为或.【点睛】本题考查了待定系数法求一次函数解析式、勾股定理以及三角形的面积,解题的关键是:(1)根据点的坐标,利用待定系数法求出直线AB的解析式;(2)分点P在原点左侧及点P在原点右侧两种情况,求出△ABP的面积.23、(1)证明见解析;(2).【解析】

(1)根据两直线平行内错角相等及折叠特性判断;(2)根据已知矩形性质及第一问证得邻边相等判断四边形BFDG是菱形,再根据折叠特性设未知边,构造勾股定理列方程求解.【详解】(1)证明:根据折叠得,∠DBC=∠DBE,又AD∥BC,∴∠DBC=∠ADB,∴∠DBE=∠ADB,∴DF=BF;(2)∵四边形ABCD是矩形,∴AD∥BC,∴FD∥BG,又∵DG∥BE,∴四边形BFDG是平行四边形,∵DF=BF,∴四边形BFDG是菱形;∵AB=6,AD=8,∴BD=1.∴OB=BD=2.假设DF=BF=x,∴AF=AD-DF=8-x.∴在直角△ABF中,AB2+AF2=BF2,即62+(8-x)2=x2,解得x=,即BF=,∴,∴FG=2FO=.【点睛】此题考查了四边形综合题,结合矩形的性质、菱形的判定和性质、勾股定理解答,考查了翻折不变性,综合性较强,是一道好题.24、1.22万步【解析】

直接利用表中数据,结合加权平均数求法得出答案.【详解】解:由题意可得,(1.1×3+1.2×2+1.3×5)=1.22(万

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论