版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山东省青岛市崂山区第三中学八年级数学第二学期期末经典模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.如图,在△ABC中,点D,E分别是AB,AC的中点,若BC=6,则DE等于().A.3 B.4 C.5 D.62.中国自主研发的第一台7纳米刻蚀机,是芯片制造和微观加工最核心的设备之一,7纳米就是0.000000007米,数据0.000000007用科学记数法表示为()A.0.7×10-8 B.7×10-8 C.7×10-9 D.7×10-103.武汉某中学体育特长生的年龄,经统计有12、13、14、15四种年龄,统计结果如图.根据图中信息可以判断该批队员的年龄的众数和中位数为()A.8和6 B.15和14 C.8和14 D.15和13.54.如图,在菱形中,,.是边上的一点,,分别是,的中点,则线段的长为()A. B. C. D.5.如果分式有意义,那么x的取值范围是()A.x≠0 B.x≤﹣3 C.x≥﹣3 D.x≠﹣36.如图,ABCD是一张平行四边形纸片,要求利用所学知识作出一个菱形,甲、乙两位同学的作法如下:则关于甲、乙两人的作法,下列判断正确的为()A.仅甲正确 B.仅乙正确 C.甲、乙均正确 D.甲、乙均错误7.当x=1时,下列式子无意义的是()A.13x B.2xx+1 C.18.已知反比例函数图像经过点(2,—3),则下列点中必在此函数图像上的是()A.(2,3) B.(1,6) C.(—1,6) D.(—2,—3)9.下列根式中,不能与合并的是()A. B. C. D.10.某校为了了解学生在校午餐所需的时间,抽查了20名同学在校午餐所需的时间,获得如下数据(单位:分):10,12,15,10,1,18,19,18,20,34,22,25,20,18,18,20,15,1,21,1.若将这些数据分为5组,则组距是()A.4分 B.5分 C.6分 D.7分二、填空题(每小题3分,共24分)11.如图,双曲线经过四边形OABC的顶点A、C,∠ABC=90°,OC平分OA与x轴正半轴的夹角,AB∥x轴,将△ABC沿AC翻折后得到△AB'C,B'点落在OA上,则四边形OABC的面积是_____.12.二次函数的最大值是____________.13.汽车行驶前油箱中有汽油52公升,已知汽车每百公里耗油8公升,油箱中的余油量Q(公升)(油箱中剩余的油量不能少于4公升)与它行驶的距离s(百公里)之间的函数关系式为_____(注明s的取值范围).14.有7个数由小到大依次排列,其平均数是38,如果这组数的前4个数的平均数是33,后4个数的平均数是42,则这7个数的中位数是.15.如图,∠C=90°,∠ABC=75°,∠CBD=30°,若BC=3cm,则AD=________cm.16.菱形的两条对角线的长分别为6和8,则这个菱形的周长为_____.17.对于一个函数,如果它的自变量x与函数值y满足:当−1≤x≤1时,−1≤y≤1,则称这个函数为“闭函数”.例如:y=x,y=−x均是“闭函数”.已知yax2bxc(a0)是“闭函数”,且抛物线经过点A(1,−1)和点B(−1,1),则a的取值范围是______________.18.如图,在正方向中,是对角线上一点,的延长线与交于点,若,则______;三、解答题(共66分)19.(10分)如图所示,四边形ABCD是平行四边形,AC、BD交于点O,∠1=∠1.(1)求证:四边形ABCD是矩形;(1)若∠BOC=110°,AB=4cm,求四边形ABCD的面积.20.(6分)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(-2,1),B(-1,4),C(-3,3).(1)画出△ABC绕点B逆时针旋转90°得到的△A1BC1.(2)以原点O为位似中心,位似比为2:1,在y轴的左侧,画出将△ABC放大后的△A2B2C2,并写出A2点的坐标_________.21.(6分)计算(1)(2)分解因式(3)解方程:.22.(8分)为宣传节约用水,小强随机调查了某小区部分家庭3月份的用水情况,并将收集的数据整理成如下统计图.(1)小明一共调查了多少户家庭?(2)求所调查家庭3月份用水量的众数、中位数和平均数;(3)若该小区有800户居民,请你估计这个小区3月份的总用水量是多少吨?23.(8分)先化简,再求值:,其中x=20160+424.(8分)如图,已知□ABCD中,点E、F分别在AD、BC上,且EF垂直平分对角线AC,垂足为O,求证:四边形AECF是菱形。25.(10分)平面直角坐标系中,直线y=2kx-2k(k>0)交y轴于点B,与直线y=kx交于点A.(1)求点A的横坐标;(2)直接写出的x的取值范围;(3)若P(0,3)求PA+OA的最小值,并求此时k的值;(4)若C(0,2)以A,B,C,D为顶点的四边形是以BC为一条边的菱形,求k的值.26.(10分)如图所示,在ΔABC中,点D在BC上,CF⊥AD于F,且CF平分∠ACB,AE=EB.求证:EF=1
参考答案一、选择题(每小题3分,共30分)1、A【解析】
由D、E分别是AB、AC的中点可知,DE是△ABC的中位线,利用三角形中位线定理可求出DE.【详解】∵D、E是AB、AC中点,∴DE为△ABC的中位线,∴ED=BC=1.故选A.【点睛】本题考查了三角形的中位线定理,用到的知识点为:三角形的中位线等于三角形第三边的一半.2、C【解析】
绝对值小于1的数也可以用科学计数法表示,一般形式为a×10-n,其中1≤|a|<10,与较大数的科学计数法不同的是其使用的是负指数幂,n由原数左边起第一个不为零的数字前面的0的个数决定.【详解】0.000000007=7×10-9,故选:C.【点睛】题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n由原数左边起第一个不为零的数字前面的0的个数决定.3、B【解析】
根据众数和中位数的定义解答即可.【详解】解:15岁的队员最多,是8人,所以众数是15岁,20人中按照年龄从小到大排列,第10、11两人的年龄都是14岁,所以中位数是14岁.故选B.【点睛】本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.4、C【解析】
如图连接BD.首先证明△ADB是等边三角形,可得BD=8,再根据三角形的中位线定理即可解决问题.【详解】如图连接BD.∵四边形ABCD是菱形,∴AD=AB=8,∵∴△ABD是等边三角形,∴BA=AD=8,∵PE=ED,PF=FB,∴故选:C.【点睛】考查菱形的性质以及三角形的中位线定理,三角形的中位线平行于第三边并且等于第三边的一半.5、D【解析】
根据分式有意义的条件可得x+3≠0,再解即可.【详解】由题意得:x+3≠0,解得:x≠3,故选D.6、C【解析】试题解析:根据甲的作法作出图形,如下图所示.∵四边形ABCD是平行四边形,∴AD∥BC,∵EF是AC的垂直平分线,在和中,∴≌,又∵AE∥CF,∴四边形AECF是平行四边形.∴四边形AECF是菱形.故甲的作法正确.根据乙的作法作出图形,如下图所示.∵AD∥BC,∴∠1=∠2,∠6=∠7.∵BF平分,AE平分∴∠2=∠3,∠5=∠6,∴∠1=∠3,∠5=∠7,∵AF∥BE,且∴四边形ABEF是平行四边形.∵∴平行四边形ABEF是菱形.故乙的作法正确.故选C.点睛:菱形的判定方法:有一组邻边相等的平行四边形是菱形.对角线互相垂直的平行四边形是菱形.四条边相等的平行四边形是菱形.7、C【解析】
分式无意义则分式的分母为0,据此求得x的值即可.【详解】A、x=0分式无意义,不符合题意;B、x=﹣1分式无意义,不符合题意;C、x=1分式无意义,符合题意;D、x取任何实数式子有意义,不符合题意.故选C.【点睛】此题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.8、C【解析】
先根据反比例函数经过点(2,-3)求出k的值,再对各选项进行逐一分析即可.【详解】∵反比例函数经过点(2,-3),∴k=2×-3=-1.A、∵2×3=1≠-1,∴此点不在函数图象上,故本选项错误;B、∵1×1=1≠-1,∴此点不在函数图象上,故本选项错误;C、∵(-1)×1=-1,∴此点在函数图象上,故本选项正确;D、∵(-2)×(-3)=1≠-1,∴此点不在函数图象上,故本选项错误.故选C.【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.9、C【解析】
解:A、,本选项不合题意;B、,本选项不合题意;C、,本选项合题意;D、,本选项不合题意;故选C.考点:同类二次根式.10、B【解析】
找出20个数据的最大值与最小值,求出它们的差,再除以5即得结果.【详解】解:根据题意得:(34-10)÷5=4.8.即组距为5分.故选B.【点睛】本题考查了频数分布表的相关知识,弄清题意,掌握求组距的方法是解题的关键.二、填空题(每小题3分,共24分)11、1【解析】
如图,延长BA交y轴于E,延长BC交x轴于F,连接OC.,由题意△ACB≌△ACB',△OCF≌△OCB',推出BC=CB'=CF,设BC=CF=a,OF=BE=2b,首先证明AE=AB,再证明S△ABCS△OCF,由此即可解决问题.【详解】如图,延长BA交y轴于E,延长BC交x轴于F,连接OC.由题意△ACB≌△ACB',△OCF≌△OCB',∴BC=CB'=CF,设BC=CF=a,OF=BE=2b.∵S△AOE=S△OCF,∴2a×AE2b×a,∴AE=b,∴AE=AB=b,∴S△ABCS△OCF,S△OCB'=S△OFC=,∴S四边形OABC=S△OCB'+2S△ABC21.故答案为:1.【点睛】本题考查了反比例函数比例系数k、翻折变换等知识,解题的关键是理解反比例函数的比例系数k的几何意义,学会利用参数解决问题,属于中考常考题型.12、-5【解析】
根据二次函数的性质求解即可.【详解】∵的a=-2<0,∴当x=1时,有最大值-5.故答案为-5.【点睛】本题考查了二次函数的最值:二次函数y=ax2+bx+c,当a>0时,抛物线在对称轴左侧,y随x的增大而减少;在对称轴右侧,y随x的增大而增大,因为图象有最低点,所以函数有最小值,当x=-时,y=;(2)当a<0时,抛物线在对称轴左侧,y随x的增大而增大;在对称轴右侧,y随x的增大而减少,因为图象有最高点,所以函数有最大值,当x=-时,y=.13、Q=52﹣8s(0≤s≤6).【解析】
求余量与行驶距离之间的关系,每行使百千米耗油8升,则行驶s百千米共耗油8s,所以余量为Q=52﹣8s,根据油箱中剩余的油量不能少于4公升求出s的取值范围.【详解】解:∵每行驶百千米耗油8升,∴行驶s百公里共耗油8s,∴余油量为Q=52﹣8s;∵油箱中剩余的油量不能少于4公升,∴52﹣8s≥4,解得s≤6,∴s的取值范围为0≤s≤6.故答案为:Q=52﹣8s(0≤s≤6).【点睛】本题考查一次函数在是实际生活中的应用,在求解函数自变量范围的时候,一定要考虑变量在本题中的实际意义.14、34【解析】试题解析:解:设这7个数的中位数是x,根据题意可得:,解方程可得:x=34.考点:中位数、平均数点评:本题主要考查了平均数和中位数.把一组数据按照从小到大的顺序或从大到小的顺序排列,最中间的一个或两个数的平均数叫做这组数据的中位数.15、6+【解析】
由已知条件可知:BD=2CD,根据三角函数可求出CD,作AB的垂直平分线,交AC于点E,在Rt△BCE中,根据三角函数可求出BE、CE,进而可将AD的长求出.【详解】解:作AB的垂直平分线,交AC于点E,∴AE=BE,∵∠C=90°,∠ABC=75°,∠CBD=30°,∴2∠A=∠BED=30°,∴tan30°==,解得:CD=cm,∵BC=3cm,∴BE=6cm,∴CE=3cm,∴AD=AE+CE﹣CD=BE+CE﹣CD=(6+)cm.16、1【解析】
根据菱形的对角线互相垂直平分的性质,利用对角线的一半,根据勾股定理求出菱形的边长,再根据菱形的四条边相等求出周长即可.【详解】解:如图,根据题意得AO=×8=4,BO=×6=3,∵四边形ABCD是菱形,∴AB=BC=CD=DA,AC⊥BD.∴△AOB是直角三角形.∴.∴此菱形的周长为:5×4=1故答案为:1.17、或【解析】分析:分别把点A、B代入函数的解析式,求出a、b、c的关系,然后根据抛物线的对称轴x=,然后结合图像判断即可.详解:∵yax2bxc(a0)经过点A(1,−1)和点B(−1,1)∴a+b+c=-1,a-b+c=1∴a+c=0,b=-1则抛物线为:yax2bx–a∴对称轴为x=①当a<0时,抛物线开口向下,且x=<0,如图可知,当≤-1时符合题意,所以;当-1<<0时,图像不符合-1≤y≤1的要求,舍去;②当a>0时,抛物线的开口向上,且x=>0,由图可知≥1时符合题意,∴0<a≤;当0<<1时,图像不符合-1≤y≤1的要求,舍去.综上所述,a的取值范围是:或.故答案为或.点睛:本题考查的是二次函数的性质,在解答此题时要注意进行分类讨论,不要漏解.18、4【解析】
由正方形的对称性和矩形的性质可得结果.【详解】连接DE交FG于点O,由正方形的对称性及矩形的性质可得:∠ABE=∠ADF=∠OEF=∠OFE=15°,∴∠EOH=30°,∴BE=DE=2OE=4EH,∴=4.故答案为4.【点睛】本题考查了正方形的性质与矩形的性质,解答本题的关键是利用正方形的对称性求得∠ABE=∠ADF=∠OEF=∠OFE=15,进而利用RT△中30°所对的直角边等于斜边的一半解决问题.三、解答题(共66分)19、(1)详见解析;(1)【解析】
(1)因为∠1=∠1,所以BO=CO,1BO=1CO,又因为四边形ABCD是平行四边形,所以AO=CO,BO=OD,则可证AC=BD,根据对角线相等的平行四边形是矩形即可判定;
(1)在△BOC中,∠BOC=110°,则∠1=∠1=30°,AC=1AB,根据勾股定理可求得BC的值,则四边形ABCD的面积可求.【详解】(1)证明:∵∠1=∠1,
∴BO=CO,即1BO=1CO.
∵四边形ABCD是平行四边形,
∴AO=CO,BO=OD,
∴AC=1CO,BD=1BO,
∴AC=BD.
∵四边形ABCD是平行四边形,
∴四边形ABCD是矩形;
(1)在△BOC中,∵∠BOC=110°,
∴∠1=∠1=(180°-110°)÷1=30°,
∴在Rt△ABC中,AC=1AB=1×4=8(cm),
∴BC=(cm).∴四边形ABCD的面积=4(cm1)【点睛】此题把矩形的判定、勾股定理和平行四边形的性质结合求解.考查学生综合运用数学知识的能力.解决本题的关键是读懂题意,得到相应的四边形的各边之间的关系.20、(1)见解析;(2)见解析,(-4,2)【解析】
(1)利用网格特点和旋转的旋转画出点A、B、C的对应点A1、B1、C1,从而得到△A1B1C1;
(2)延长OA到A2使A2A=OA,则点A2为点A的对应点,同样方法作出B、C的对应点B2,C2,从而得到△A2B2C2,然后写出A2的坐标.【详解】解:(1)如图,△A1B1C1为所求;(2)如图,△A2B2C2为所作,点A2的坐标分别为(-4,2)【点睛】此题主要考查了旋转变换以及位似变换,正确利用旋转的性质得出对应点位置是解题关键.位似变换:利用以原点为位似中心的对应点的坐标之间的关系写出所求图形各顶点坐标,然后描点即可.21、①;②;③无解【解析】
(1)分别求出各不等式的解集,再根据小大大小中间找求出其公共解集即可;(1)首先利用平方差公式进行分解,再利用完全平方公式进行二次分解即可;(3)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】(1)由①得x≥-1,由②得x<1,原不等式的解为-1≤x<1.(1)原式=(a1+4)1-(4a)1,=(a1+4+4a)(a1+4-4a),=(a+1)1(a-1)1.(3)去分母得:1-1x=1x-4-3,移项合并得:4x=8,解得:x=1,经检验x=1是增根,分式方程无解.【点睛】(1)本题考查的是解一元一此不等式组,解答此题的关键是熟知解一元一此不等式组应遵循的法则,同大取较大,同小取较小,小大大小中间找,大大小小解不了.(1)此题主要考查了公式法分解因式,关键是熟练掌握平方差公式:a1-b1=(a+b)(a-b),完全平方公式:a1±1ab+b1=(a±b)1.(3)此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.22、(1)20户;(2)众数是4吨,位数是6吨,均数是4.5吨;(3)估计这个小区3月份的总用水量是3600吨.【解析】分析:(1)、将各组的人数进行相加得出答案;(2)、根据众数、中位数和平均数的计算法则进行计算即可;(3)、利用平均数乘以800得出答案.详解:(1)、小明一共调查的户数是:1+1+3+6+4+2+2+1=20(户);(2)、在这组数据中,4出现了6次,出现的次数最多,∴这组数据的众数是4吨;∵将这组数据按从小到大的顺序排列,其中出于中间的两个数都是6,有=6,∴这组数据的中位数是6吨;这组数据的平均数是:=4.5(吨);(3)据题意得:800×4.5=3600(吨),答:估计这个小区3月份的总用水量是3600吨.点睛:本题主要考查的是众数、平均数、中位数的计算以及利用样本推算总量,属于基础题型.理解计算法则是解题的关键.23、,.【解析】
先算括号里面的,再算除法,最后求出x的值代入进行计算即可.【详解】解:原式,∵x=20160+4=5,∴原式=.【点睛】本题考查的是分式的化简求值,熟练掌握运算法则是解题关键.24、证明见解析【解析】试题分析:先根据垂直平分线的性质得所以∠1=∠2,∠3=∠4;再结合平行线的性质得出∠1=∠4=∠3,即利用四条边相等的四边形是菱形即可证
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 诉讼案件处理经验总结
- 房地产开发业会计工作总结
- 网上购物系统课程设计jsp
- 茶叶店销售员工作总结
- 工业行业保安工作总结
- 电子商务行业行政后勤工作总结
- 电影影视销售心得体会
- 玻璃制品生产招标合同三篇
- 劝退员工合同(2篇)
- 创新项目保密协议书(2篇)
- 管线管廊布置设计规范
- 提升教练技术--回应ppt课件
- 招聘与录用选择题
- 《工资、薪金的个人所得税的计算》教学设计
- 精品洲际酒店集团皇冠酒店设计标准手册
- 周视瞄准镜的初步设计-北京理工大学-光电学院小学期作业
- Writing写作教学设计
- 心房起搏电极的位置选择ppt课件
- 四川省南充市2019-2020学年九年级上期末数学试卷(含答案解析)
- 上海市宝山区2019届高三英语一模含答案
- 《数与形》教学反思
评论
0/150
提交评论