2024年湖北大悟书生学校八年级下册数学期末学业水平测试模拟试题含解析_第1页
2024年湖北大悟书生学校八年级下册数学期末学业水平测试模拟试题含解析_第2页
2024年湖北大悟书生学校八年级下册数学期末学业水平测试模拟试题含解析_第3页
2024年湖北大悟书生学校八年级下册数学期末学业水平测试模拟试题含解析_第4页
2024年湖北大悟书生学校八年级下册数学期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年湖北大悟书生学校八年级下册数学期末学业水平测试模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.下列4个命题:①对角线相等且互相平分的四边形是正方形;②有三个角是直角的四边形是矩形;③对角线互相垂直的平行四边形是菱形;④一组对边平行,另一组对边相等的四边形是平行四边形其中正确的是()A.②③ B.② C.①②④ D.③④2.下列各组数中,能构成直角三角形的是()A.4,5,6 B.1,1, C.6,8,11 D.5,12,233.分式1x+2有意义,xA.x≠2 B.x≠﹣2 C.x=2 D.x=﹣24.炎炎夏日,甲安装队为A小区安装60台空调,乙安装队为B小区安装50台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x台,根据题意,下面所列方程中正确的是A. B. C. D.5.如图,正方形ABCD的边长为1,点E,F分别是对角线AC上的两点,EG⊥AB.EI⊥AD,FH⊥AB,FJ⊥AD,垂足分别为G,I,H,J.则图中阴影部分的面积等于()A.1 B. C. D.6.菱形的两条对角线长分别为6㎝和8㎝,则这个菱形的面积为()A.48 B. C. D.187.如图,在中,,,,将△ABC沿直线BC向右平移得到△DEF,连接AD,若AD=2,则点C到DF的距离为()A.1 B.2 C.2.5 D.48.若A(x1,y1)、B(x2,y2)、C(x3,y3)是反比例函数y=图象上的点,且x1<x2<0<x3,则y1、y2、y3的大小关系正确的是()A.y3>y1>y2 B.y1>y2>y3C.y2>y1>y3 D.y3>y2>y19.如图,在矩形ABCD中,对角线相交于点,则AB的长是A.3cm B.6cm C.10cm D.12cm10.如图,在4×4的网格纸中,ABC的三个顶点都在格点上,现要在这张网格纸的四个格点M,N,P,Q中找一点作为旋转中心.将ABC绕着这个中心进行旋转,旋转前后的两个三角形成中心对称,且旋转后的三角形的三个顶点都在这张4×4的网格纸的格点上,那么满足条件的旋转中心有()A.点M,点N B.点M,点Q C.点N,点P D.点P,点Q二、填空题(每小题3分,共24分)11.如图,平行四边形中,为的中点,连接,若平行四边形的面积为,则的面积为____.12.已知一次函数y=kx+b的图象交y轴于正半轴,且y随x的增大而减小,请写出符合上述条件的一个解析式:_____.13.如图,已知,,,当时,______.14.如图,中,,,,点是边上一定点,且,点是线段上一动点,连接,以为斜边在的右侧作等腰直角.当点从点出发运动至点停止时,点的运动的路径长为_________.15.如图,升降平台由三个边长为1.2米的菱形和两个腰长为1.2米的等腰三角形组成,其中平台AM与底座A0N平行,长度均为24米,点B,B0分别在AM和A0N上滑动这种设计是利用平行四边形的________;为了安全,该平台作业时∠B1不得超过60°,则平台高度(AA0)的最大值为________

米16.如图,在ABCD中,线段BE、CE分别平分∠ABC和∠BCD,若AB=5,BE=8,则CE的长度为________.17.若关于有增根,则_____;18.m,n分别是的整数部分和小数部分,则2m-n=______.三、解答题(共66分)19.(10分)某校数学兴趣小组根据学习函数的经验,对函数y=|x|+1的图象和性质进行了探究,探究过程如下:(1)自变量x的取值范围是全体实数,x与y的几组对应值如表:X…﹣4﹣3﹣2﹣101234…Y…32.5m1.511.522.53…(1)其中m=.(2)如图,在平面直角坐标系xOy中,描出了上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(3)当2<y≤3时,x的取值范围为.20.(6分)无锡阳山水蜜桃上市后,甲、乙两超市分别用60000元以相同的进价购进相同箱数的水蜜桃,甲超市销售方案是:将水蜜桃按分类包装销售,其中挑出优质大个的水蜜桃400箱,以进价的2倍价格销售,剩下的水蜜桃以高于进价10%销售.乙超市的销售方案是:不将水蜜桃分类,直接销售,价格按甲超市分类销售的两种水蜜桃售价的平均数定价.若两超市将水蜜桃全部售完,其中甲超市获利42000元(其它成本不计).问:(1)水蜜桃进价为每箱多少元?(2)乙超市获利多少元?哪种销售方式更合算?21.(6分)以下是八(1)班学生身高的统计表和扇形统计图,请回答以下问题.八(1)班学生身高统计表组别身高(单位:米)人数第一组1.85以上1第二组第三组19第四组第五组1.55以下8(1)求出统计表和统计图缺的数据.(2)八(1)班学生身高这组数据的中位数落在第几组?(3)如果现在八(1)班学生的平均身高是1.63,已确定新学期班级转来两名新同学,新同学的身高分别是1.54和1.77,那么这组新数据的中位数落在第几组?22.(8分)八年级物理兴趣小组20位同学在实验操作中的得分如表:得分(分)10987人数(人)5843(1)求这20位同学实验操作得分的众数,中位数;(2)这20位同学实验操作得分的平均分是多少?23.(8分)如图,矩形ABCD中,AB=6cm,BC=8cm,E、F是对角线AC上的两个动点,分别从A、C同时出发,相向而行,速度均为2cm/s,运动时间为t(0≤t≤5)秒.(1)若G、H分别是AB、DC的中点,且t≠2.5s,求证:以E、G、F、H为顶点的四边形始终是平行四边形;(2)在(1)的条件下,当t为何值时?以E、G、F、H为顶点的四边形是矩形;(3)若G、H分别是折线A-B-C,C-D-A上的动点,分别从A、C开始,与E.F相同的速度同时出发,当t为何值时,以E、G、F、H为顶点的四边形是菱形,请直接写出t的值.24.(8分)如图,在菱形ABCD中,点P是BC的中点,仅用无刻度的直尺按要求画图.(保留作图痕迹,不写作法)(1)在图①中画出AD的中点H;(2)在图②中的菱形对角线BD上,找两个点E、F,使BE=DF.25.(10分)已知平面直角坐标系中有一点(,).(1)若点在第四象限,求的取值范围;(2)若点到轴的距离为3,求点的坐标.26.(10分)问题背景如图1,在正方形ABCD的内部,作∠DAE=∠ABF=∠BCG=∠CDH,根据三角形全等的条件,易得△DAE≌△ABF≌△BCG≌△CDH,从而得到四边形EFGH是正方形.类比探究如图2,在正△ABC的内部,作∠BAD=∠CBE=∠ACF,AD,BE,CF两两相交于D,E,F三点(D,E,F三点不重合)(1)△ABD,△BCE,△CAF是否全等?如果是,请选择其中一对进行证明.(2)△DEF是否为正三角形?请说明理由.(3)进一步探究发现,△ABD的三边存在一定的等量关系,设BD=a,AD=b,AB=c,请探索a,b,c满足的等量关系.

参考答案一、选择题(每小题3分,共30分)1、A【解析】

根据正方形的判定,矩形的判定、菱形的判定和平行四边形的判定判断即可【详解】①对角线相等且互相垂直平分的四边形是正方形,少“垂直”,故错;②四边形的三个角是直角,由内角和为360°知,第四个角必是直角,正确;③平行四边形对角线互相平分,加上对角线互相垂直,是菱形,故正确;④有可能是等腰梯形,故错,正确的是②③【点睛】此题考查正方形的判定,矩形的判定、菱形的判定和平行四边形的判定,解题关键在于掌握判定定理2、B【解析】

根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.【详解】解:A、,故不是直角三角形,错误;B、,故是直角三角形,正确;C、故不是直角三角形,错误;D、故不是直角三角形,错误.故选:B.【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.3、B【解析】

分式中,分母不为零,所以x+2≠0,所以x≠-2【详解】解:因为1x+2有意义,所以x+2≠0,所以x≠-2,所以选【点睛】本题主要考查分式有意义的条件4、D【解析】试题分析:由乙队每天安装x台,则甲队每天安装x+2台,则根据关键描述语:“两队同时开工且恰好同时完工”,找出等量关系为:甲队所用时间=乙队所用时间,据此列出分式方程:.故选D.5、B【解析】

根据轴对称图形的性质,解决问题即可.【详解】解:∵四边形ABCD是正方形,∴直线AC是正方形ABCD的对称轴,∵EG⊥AB.EI⊥AD,FH⊥AB,FJ⊥AD,垂足分别为G,I,H,J.∴根据对称性可知:四边形EFHG的面积与四边形EFJI的面积相等,∴S阴=S正方形ABCD=,故选B.【点睛】本题考查正方形的性质,解题的关键是利用轴对称的性质解决问题,属于中考常考题型.6、B【解析】试题解析:根据菱形的面积公式:故选B.7、A【解析】

作CG⊥DF于点G,由平移的性质可得AD=CF=2,∠ACB=∠F=30°,再由30°直角三角形的性质即可求得CF的值.【详解】如图,作CG⊥DF于点G,由平移知,AD=CF=2,∠ACB=∠F=30°,∴CG=CF=1,即点C到DF的距离为1.故选A.【点睛】本题考查了平移的性质及30°直角三角形的性质,正确作出辅助线,熟练利用平移的性质及30°直角三角形的性质是解决问题的关键.8、A【解析】

先根据反比例函数y=的系数1>0判断出函数图象在一、三象限,在每个象限内,y随x的增大而减小,再根据x1<x1<0<x3,判断出y1、y1、y3的大小.【详解】解:∵反比例函数y=的系数3>0,∴该反比例函数的图象如图所示,该图象在第一、三象限,在每个象限内,y随x的增大而减小,又∵x1<x1<0<x3,,∴y3>y1>y1.故选A.9、A【解析】试题解析:∵四边形ABCD是矩形,∴OA=OC=OB=OD=3,∴△AOB是等边三角形,∴AB=OA=3,故选A.点睛:有一个角等于得等腰三角形是等边三角形.10、C【解析】

画出中心对称图形即可判断【详解】解:观察图象可知,点P.点N满足条件.故选:C.【点睛】本题考查利用旋转设计图案,中心对称等知识,解题的关键是理解题意,灵活运用所学知识解决问题.二、填空题(每小题3分,共24分)11、6【解析】

如图,连接AC.首先证明△ABC≌△CDA,可得S△ABC=S△ADC=×24=12(cm2),由AE=DE,可得S△CDE=S△ADC=6;【详解】解:如图,连接.∵四边形是平行四边形,∴,,∵,∴,∴,∵,∴,故答案为6【点睛】本题考查平行四边形的性质、三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.12、【解析】试题解析:∵一次函数y=kx+b的图象交y轴于正半轴,∴b>0,∵y随x的增大而减小,∴k<0,例如y=-x+1(答案不唯一,k<0且b>0即可).考点:一次函数图象与系数的关系.13、1或【解析】

求出直线AB的解析式,设直线x=2交直线AB于点E,可得,再根据三角形面积公式列出方程求解即可.【详解】解:如图,∵A(0,2),B(6,0),

∴直线AB的解析式为设直线x=2交直线AB于点E,则可得到,由题意:解得m=1或故答案为:1或【点睛】本题考查了坐标与图形的性质,解题的关键是学会构建一次函数解决问题,学会利用参数构建方程解决问题,属于中考常考题型.14、【解析】

如图,连接CF,作FM⊥BC于M,FN⊥AC于N.证明△FNA≌△FME(AAS),推出FM=FM,AN=EM,推出四边形CMFN是正方形,推出点F在射线CF上运动(CF是∠ACB的角平分线),求出两种特殊位置CF的长即可解决问题.【详解】如图,连接CF,作FM⊥BC于M,FN⊥AC于N.

∵∠FNC=∠MCN=∠FMC=90°,

∴四边形CMFN是矩形,

∴∠MFN=∠AFE=90°,

∴∠AFN=∠MFE,

∵AF=FE,∠FNA=∠FME=90°,

∴△FNA≌△FME(AAS),

∴FM=FM,AN=EM,

∴四边形CMFN是正方形,

∴CN=CM,CF=CM,∠FCN=∠FCM=45°,

∵AC+CE=CN+AN+CM-EM=2CM,

∴CF=(AC+CE).

∴点F在射线CF上运动(CF是∠ACB的角平分线),

当点E与D重合时,CF=(AC+CD)=2,

当点E与B重合时,CF=(AC+CB)=,

∵-2=,

∴点F的运动的路径长为.

故答案为:.【点睛】此题考查全等三角形的判定与性质,等腰直角三角形的性质,解题关键在于灵活运用几何性质确定图形运动过程中不变的几何量,从而判定轨迹的几何特征,然后进行几何计算.15、不稳定性;4.2【解析】

(1)根据四边形的不稳定性即可解决问题.(1)当∠B1=60°时,平台AA0的高度最大,解直角三角形A1B0A0,可得A0A1的长,再由AA3=A3A1=A1A1=A1A0,即可解决问题.【详解】解:(1)因为四边形具有不稳定性,点B,B0分别在AM和A0N上滑动,从而达到升降目的,因而这种设计利用了平行四边形的不稳定性;(1)由图可知,当∠B1=60°时,平台AA0的高度最大,=30°,B0A1=1A1C1=1.4,则A0A1=A1B0sin∠A1B0A0=1.4×=1.1.

又∵AA3=A3A1=A1A1=A1A0=1.1,则AA0=4×1.1=4.2.故答案为:不稳定性,4.2.【点睛】本题考查了解直角三角形的应用,等腰三角形的性质,菱形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16、6【解析】

根据角平分线的定义和平行线的性质得到等腰三角形ABE和等腰三角形CDE和直角三角形BCE.根据直角三角形的勾股定理得到CE即可.【详解】解:∵BE和CE分别平分∠ABC和∠BCD,∴∠ABE=∠EBC,∠DCE=∠ECB,∵▱ABCD,∴AB∥CD,AB=CD=5,∴∠ABC+∠DCB=180°,∠AEB=∠EBC,∠DEC=∠ECB,∴(∠ABC+∠DCB)=90°,∠ABE=∠AEB,∠DEC=∠DCE,∴∠EBC+∠ECB=90°,AB=AE=5,CD=DE=AB=5,∴△EBC是直角三角形,AD=BC=AE+ED=10根据勾股定理:CE=.故答案为6【点睛】本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.17、1【解析】

方程两边都乘以最简公分母(x–1),把分式方程化为整式方程,再根据分式方程的增根就是使最简公分母等于0的未知数的值求出x的值,然后代入进行计算即可求出a的值.【详解】解:方程两边都乘(x﹣1),得1-ax+3x=3x﹣3,∵原方程有增根∴最简公分母x﹣1=0,即增根为x=1,把x=1代入整式方程,得a=1.【点睛】此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.方程的增根不适合原方程,但适合去分母后的整式方程,这是求字母系数的重要思想方法.18、【解析】

先估算出的大致范围,然后可求得-1的整数部分和小数部分,从而可得到m、n的值,最后代入计算即可.【详解】解:∵1<2<4,∴1<<2,∴0<-1<1.∴m=0,n=-1.∴2m-n=0-(-1)=1-.故答案为:【点睛】本题主要考查的是估算无理数的大小,求得的大致范围是解题的关键.三、解答题(共66分)19、(1)2;(2)见解析;(3)﹣1≤x<﹣2或2<x≤1【解析】

(1)依据在y=|x|+1中,令x=﹣2,则y=2,可得m的值;(2)将图中的各点用平滑的曲线连接,即可画出该函数的图象;(3)依据函数图象,即可得到当2<y≤3时,x的取值范围.【详解】(1)在y=|x|+1中,令x=﹣2,则y=2,∴m=2,故答案为2;(2)如图所示:(3)由图可得,当2<y≤3时,x的取值范围为﹣1≤x<﹣2或2<x≤1.故答案为﹣1≤x<﹣2或2<x≤1.【点睛】本题考查了一次函数的图象与性质以及一次函数图象上点的坐标特征,根据题意画出图形,利用数形结合思想是解题的关键.20、(1)水蜜桃进价为每箱100元;(2)乙超市获利为33000元,甲种销售方式获利多.【解析】

(1)设水蜜桃进价为每箱x元,根据利润=(售价-进价)×箱数,利用甲超市获利42000元列分式方程即可求出x的值,检验即可得答案;(2)根据进价可得甲超市的售价,即可求出乙超市的售价,根据进价和总价可求出购进箱数,即可求出乙超市的利润,与42000元比较即可得答案.【详解】设水蜜桃进价为每箱x元,∴,解得:x=100,经检验x=100是分式方程的解,且符合题意,则水蜜桃进价为每箱100元;(2)∵挑出优质大个的水蜜桃以进价的2倍价格销售,剩下的水蜜桃以高于进价10%销售.∴甲超市水蜜桃的售价是200元/箱和110元/箱,∴乙超市售价为,∵甲、乙两超市分别用60000元以相同的进价购进相同箱数的水蜜桃,∴乙超市购进水蜜桃:60000÷100=600(箱)∴乙超市获利为600×(155-100)=33000(元),∵42000元>33000元,∴甲种销售方式获利多.【点睛】本题考查分式方程的应用,根据题意找出等量关系列出方程是解题关键.21、(1)统计表中:第二组人数4人,第四组人数18人,扇形图中:第三组38%,第五组:16%;(2)第四组;(3)第四组.【解析】

(1)用第一组的人数和除以对应的百分比求出总人数,再用总人数分别乘以第二、四组的百分比求得其人数,根据百分比的概念求出第三、五组的百分比可得答案;

(2)根据中位数的概念求解可得;

(3)根据中位数的概念求解可得.【详解】解:(1)第一组人数为1,占被调查的人数百分比为2%,

∴被调查的人数为1÷2%=50(人),

则第二组人数为50×8%=4,第四组人数为50×36%=18(人),

第三组对应的百分比为×100%=38%,第五组的百分比为×100%=16%;

(2)被调查的人数为50人,中位数是第25和26个数据平均数,而第一二三组数据有24个,∴第25和26个数都落在第四组,所以八(1)班学生身高这组数据的中位数落在第四组;

(3)新学期班级转来两名新同学,此时共有52名同学,1.54在第五组,1.77在第二组.而新数据的第一二三组数据有25个数据,第26、27个数据都落在第四组,新数据的中位数是第26、27个数据的平均数,

所以新数据的中位数落在第四组.【点睛】本题考查了扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.22、(1)众数是9分,中位数是9分;(2)这20位同学的平均得分是8.75分【解析】

(1)众数是指一组数据中出现次数最多的数,而中位数是指在将一组数据按照大小顺序排列后位于中间的那个数或位于中间的两个数的平均数,据此进一步求解即可;(2)根据平均数的计算公式进一步加以计算即可.【详解】(1)∵9分的有8个人,人数最多,∴众数是9分;把这些数从小到大排列,中位数是第10、11个数的平均数,∴中位数是(分);(2)根据题意得:(分)答:这20位同学的平均得分是8.75分.【点睛】本题主要考查了众数、中位数的定义与平均数的计算,熟练掌握相关概念是解题关键.23、(1)证明见解析;(2)当t为4.5秒或0.5秒时,四边形EGFH是矩形;(3)t为秒时,四边形EGFH是菱形.【解析】

(1)根据勾股定理求出AC,证明△AFG≌△CEH,根据全等三角形的性质得到GF=HE,利用内错角相等得GF∥HE,根据平行四边形的判定可得结论;(2)如图1,连接GH,分AC-AE-CF=1.AE+CF-AC=1两种情况,列方程计算即可;(3)连接AG.CH,判定四边形AGCH是菱形,得到AG=CG,根据勾股定理求出BG,得到AB+BG的长,根据题意解答.【详解】解:(1)∵四边形ABCD是矩形,∴AB=CD,AB∥CD,AD∥BC,∠B=90°,∴∠BAC=∠DCA,∵AB=6cm,BC=1cm,∴AC=10cm,∵G、H分别是AB、DC的中点,∴AG=AB,CH=CD,∴AG=CH,∵E、F是对角线AC上的两个动点,分别从A、C同时出发,相向而行,速度均为2cm/s,∴AE=CF,∴AF=CE,∴△AGF≌△CHE(SAS),∴GF=HE,∠AFG=∠CEH,∴GF∥HE,∴以E、G、F、H为顶点的四边形始终是平行四边形;(2)如图1,连接GH,由(1)可知四边形EGFH是平行四边形,∵G、H分别是AB.DC的中点,∴GH=BC=1cm,∴当EF=GH=1cm时,四边形EGFH是矩形,分两种情况:①若AE=CF=2t,则EF=10-4t=1,解得:t=0.5,②若AE=CF=2t,则EF=2t+2t-10=1,解得:t=4.5,即当t为4.5秒或0.5秒时,四边形EGFH是矩形;(3)如图2,连接AG、CH,∵四边形GEHF是菱形,∴GH⊥EF,OG=OH,OE=OF,∵AF=CE∴OA=OC,∴四边形AGCH是菱形,∴AG=CG,设AG=CG=x,则BG=1-x,由勾股定理得:AB2+BG2=AG2,即62+(1-x)2=x2,解得:x=,∴BG=1-=,∴AB+BG=6+=,t=÷2=,即t为秒时,四边形EGFH是菱形.【点睛】本题是四边形的综合题,考查了矩形的性质.平行四边形的判定和菱形的判定,掌握矩形的性质定理.菱形的判定定理,灵活运用分情况讨论思想是解题的关键.24、见解析【解析】分析:(1)根据菱形的对角线互相垂直平分可

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论