湖北省恩施州2024年八年级数学第二学期期末考试模拟试题含解析_第1页
湖北省恩施州2024年八年级数学第二学期期末考试模拟试题含解析_第2页
湖北省恩施州2024年八年级数学第二学期期末考试模拟试题含解析_第3页
湖北省恩施州2024年八年级数学第二学期期末考试模拟试题含解析_第4页
湖北省恩施州2024年八年级数学第二学期期末考试模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省恩施州2024年八年级数学第二学期期末考试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.点M(-2,3)关于x轴对称点的坐标为A.(-2,-3)B.(2,-3)C.(-3,-2)D.(2,3)2.如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为120°的菱形,剪口与第二次折痕所成角的度数应为A.15°或30° B.30°或45° C.45°或60° D.30°或60°3.如图,要使□ABCD成为矩形,需添加的条件是()A.AB=BC B.∠ABC=90° C.AC⊥BD D.∠1=∠24.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.5.分式可变形为(

)A.

B.

C.

D.6..已知样本x1,x2,x3,x4的平均数是2,则x1+3,x2+3,x3+3,x4+3的平均数为().A.2 B.2.75 C.3 D.57.不等式组的解集是x>1,则m的取值范围是()A.m≥1 B.m≤1 C.m≥0 D.m≤08.将一个有45°角的三角板的直角顶点放在一张宽为3cm的纸带边沿上,另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图(3),则三角板的最大边的长为()A. B. C. D.9.已知两点的坐标分别是(-2,3)和(2,3),则说法正确的是()A.两点关于x轴对称B.两点关于y轴对称C.两点关于原点对称D.点(-2,3)向右平移两个单位得到点(2,3)10.二次根式中,字母a的取值范围是()A.a<1 B.a≤1 C.a≥1 D.a>1二、填空题(每小题3分,共24分)11.如果一组数据:5,,9,4的平均数为6,那么的值是_________12.如图,在正方形ABCD中,延长BC至E,使CE=CA,则∠E的度数是_____.13.已知一次函数图像不经过第一象限,求m的取值范围是__________.14.已经RtABC的面积为,斜边长为,两直角边长分别为a,b.则代数式a3b+ab3的值为_____.15.□ABCD中,AB=6,BC=4,则□ABCD的周长是____________.16.如图,在平行四边形ABCD中,BE平分∠ABC,交AD于点E,AB=3cm,ED=cm,则平行四边形ABCD的周长是_________.17.若函数的图象经过A(1,)、B(-1,)、C(-2,)三点,则,,的大小关系是__________________.18.将一元二次方程化成一般式后,其一次项系数是______.三、解答题(共66分)19.(10分)先化简,再求值:先化简÷(﹣x+1),然后从﹣2<x<的范围内选取一个合适的整数作为x的值代入求值.20.(6分)如图,为了测得电视塔的高度AB,在D处用高为1米的测角仪CD,测得电视塔顶端A的仰角为30°,再向电视塔方向前进100米到达F处,又测得电视塔顶端A的仰角为60°,求这个电视塔的高度AB.(参考数据).21.(6分)已知在边长为4的菱形ABCD中,∠EBF=∠A=60°,(1)如图①,当点E、F分别在线段AD、DC上,①判断△EBF的形状,并说明理由;②若四边形ABFD的面积为7,求DE的长;(2)如图②,当点E、F分别在线段AD、DC的延长线上,BE与DC交于点O,设△BOF的面积为S1,△EOD的面积为S2,则S1-S2的值是否为定值,如果是,请求出定值:如果不是,请说明理由.22.(8分)某校初二年级以班为单位进行篮球比赛,第一轮比赛是先把全年级平分成、两个大组,同一个大组的每两个班都进行一场比赛,这样第一轮、两个大组共进行了20场比赛,问该校初二年级共有几个班?23.(8分)已知:如图,□ABCD中,延长BA至点E,使BE=AD,连结CE,求证:CE平分∠BCD.24.(8分)已知一次函数图象经过点(3,5),(-4,-9)两点.(1)求一次函数解析式;(2)求这个一次函数图象和x轴、y轴的交点坐标.25.(10分)在正方形ABCD中,E是△ABD内的点,EB=EC.(1)如图1,若EB=BC,求∠EBD的度数;(2)如图2,EC与BD交于点F,连接AE,若,试探究线段FC与BE之间的等量关系,并说明理由.26.(10分)已知,如图,∠C=90°,∠B=30°,AD是△ABC的角平分线.(1)求证:BD=2CD;(2)若CD=2,求△ABD的面积.

参考答案一、选择题(每小题3分,共30分)1、A【解析】两点关于x轴对称,那么让横坐标不变,纵坐标互为相反数即可.解:∵3的相反数是-3,

∴点M(-2,3)关于x轴对称点的坐标为(-2,-3),

故答案为A点评:考查两点关于x轴对称的坐标的特点:横坐标不变,纵坐标互为相反数2、D【解析】试题分析:∵四边形ABCD是菱形,∴∠ABD=∠ABC,∠BAC=∠BAD,AD∥BC,∵∠BAD=120°,∴∠ABC=180°﹣∠BAD=180°﹣120°=60°,∴∠ABD=30°,∠BAC=60°.∴剪口与折痕所成的角a的度数应为30°或60°.考点:剪纸问题3、B【解析】

根据一个角是90度的平行四边形是矩形进行选择即可.【详解】解:A、是邻边相等,可判定平行四边形ABCD是菱形;

B、是一内角等于90°,可判断平行四边形ABCD成为矩形;

C、是对角线互相垂直,可判定平行四边形ABCD是菱形;

D、是对角线平分对角,可判断平行四边形ABCD成为菱形;故选:B.【点睛】本题主要应用的知识点为:矩形的判定.①对角线相等且相互平分的四边形为矩形.②一个角是90度的平行四边形是矩形.4、C【解析】

根据轴对称图形与中心对称图形的概念,结合选项所给图形即可判断.【详解】解:A、不是中心对称图形,也不是轴对称图形,故本选项错误;

B、不是中心对称图形,是轴对称图形,故本选项错误;

C、既是中心对称图形,也是轴对称图形,故本选项正确;

D、是中心对称图形,不是轴对称图形,故本选项错误.

故选:C.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5、D【解析】

根据分式的性质,可化简变形.【详解】.故答案为:D【点睛】考查了分式的基本性质,正确利用分式的基本性质求出是解题关键.6、D【解析】因为样本,,,的平均数是2,即2=,所以+3,+3,+3,+3的平均数是=2+3=1.故选D.7、D【解析】

表示出不等式组中两不等式的解集,根据已知不等式组的解集确定出m的范围即可.【详解】解:不等式整理得:,由不等式组的解集为x>1,得到m+1≤1,解得:m≤0.故选D.【点睛】本题考查了不等式组的解集的确定.8、D【解析】分析:过另一个顶点C作垂线CD如图,可得直角三角形,根据直角三角形中30°角所对的边等于斜边的一半,可求出有45°角的三角板的直角直角边,再由等腰直角三角形求出最大边.解答:解:过点C作CD⊥AD,∴CD=3,在直角三角形ADC中,∵∠CAD=30°,∴AC=2CD=2×3=6,又三角板是有45°角的三角板,∴AB=AC=6,∴BC2=AB2+AC2=62+62=72,∴BC=故选D.9、B【解析】

几何变换.根据关于y轴对称的点坐标横坐标互为相反数,纵坐标相等,可得答案.【详解】解:∵两点的坐标分别是(-2,3)和(2,3),横坐标互为相反数,纵坐标相等,∴两点关于y轴对称,故选:B.【点睛】本题考查了关于y轴对称的点坐标,利用关于y轴对称的点坐标横坐标互为相反数,纵坐标相等是解题关键.10、C【解析】

由二次根式有意义的条件可知a-1≥0,解不等式即可.【详解】由题意a-1≥0解得a≥1故选C.【点睛】本题考查了二次根式的意义,掌握被开方数需大于等于0即可解题.二、填空题(每小题3分,共24分)11、6【解析】

根据平均数的定义,即可求解.【详解】根据题意,得解得故答案为6.【点睛】此题主要考查平均数的求解,熟练掌握,即可解题.12、22.5°【解析】

根据正方形的性质就有∠ACD=∠ACB=45°=∠CAE+∠AEC,根据CE=AC就可以求出∠CAE=∠E=22.5°.【详解】解:∵四边形ABCD是正方形,∴∠ACD=∠ACB=45°.∵∠ACB=∠CAE+∠AEC,∴∠CAE+∠AEC=45°.∵CE=AC,∴∠CAE=∠E=22.5°.故答案为22.5°【点睛】本题考查了正方形的性质的运用,等腰三角形的性质的运用,三角形的外角与内角的关系的运用及三角形内角和定理的运用.13、1<m≤2【解析】【分析】一次函数图像不经过第一象限,则一次函数与y轴的交点在y轴的负半轴或原点.【详解】∵图象不经过第一象限,即:一次函数与y轴的交点在y轴的负半轴或原点,∴1-m<0,m-2≤0∴m的取值范围为:1<m≤2故答案为:1<m≤2【点睛】本题考核知识点:一次函数的图象.解题关键点:理解一次函数的性质.14、14【解析】

根据两直角边乘积的一半表示出面积,把已知面积代入求出ab的值,利用勾股定理得到a2+b2=,将代数式a3b+ab3变形,把a+b与ab的值代入计算即可求出值.【详解】解:∵的面积为∴=解得=2根据勾股定理得:==7则代数式==2×7=14故答案为:14【点睛】本题主要考查了三角形的面积公式、勾股定理、因式分解等知识点,把要求的式子因式分解,再通过面积公式和勾股定理等量代换是解题的关键.15、1【解析】

根据平行四边形的对边相等,可得AB=CD,AD=BC,所以可求得的周长为1.【详解】∵四边形ABCD是平行四边形,∴CD=AB=6,AD=BC=4,∴的周长为1.故答案为1.【点睛】本题考查平行四边形的性质:平行四边形的对边相等.16、15cm【解析】分析:由平行四边形ABCD得到AB=CD,AD=BC,AD∥BC,再和已知BE平分∠ABC,进一步推出∠ABE=∠AEB,即AB=AE=3,即可求出AD的长,就能求出答案.详解:∵四边形ABCD是平行四边形,∴AB=CD=3cm,AD=BC,AD∥BC,∴∠AEB=∠EBC,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ABE=∠AEB,∴AB=AE=3,∴AD=AE+DE=3+=4.5,∴AD=BC=4.5,∴平行四边形的周长是2(AB+BC)=2(3+4.5)=15(cm).故答案为:15cm.点睛:本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.17、<<【解析】

分别计算自变量为1,-1,-2对应的函数值即可得到,,的大小关系.【详解】解:当x=1时,=-2×1=-2;当x=-1时,=-2×(-1)=2;当x=-2时,=-2×(-2)=4;∵-2<2<4∴<<故答案为:<<.【点睛】本题考查了正比例函数图象上点的坐标特征:正比例函数图象上点的坐标满足其解析式.18、-7【解析】

根据完全平方公式进行化简即可求解.【详解】由得x2-7x-3=0∴其一次项系数是-7.【点睛】此题主要考查一元二次方程的一般式,解题的关键是熟知完全平方公式.三、解答题(共66分)19、﹣,﹣.【解析】

根据分式的减法和除法可以化简题目中的式子,然后在-2<x<中选取一个使得原分式有意义的整数值代入化简后的式子即可求出最后答案,值得注意的是,本题答案不唯一,x的值可以取-2、2中的任意一个.【详解】原式====,∵-2<x<(x为整数)且分式要有意义,所以x+1≠0,x-1≠0,x≠0,即x≠-1,1,0,因此可以选取x=2时,此时原式=-.【点睛】本题主要考查了求代数式的值,解本题的要点在于在化解过程中,求得x的取值范围,从而再选取x=2得到答案.20、87.6米【解析】

根据题意并结合图象运用解直角三角形中的勾股定理进行分析求解即可.【详解】解:由题意结合图象,∵,∴,∵米,∴CE=AE=100米,米,∴AG(米),∵米,∴AB86.6+1=87.6(米).【点睛】本题考查解直角三角形的应用,解题的关键是根据仰角构造直角三角形,利用三角函数求解.21、(1)①△EBF是等边三角形,见解析;②DE=1;(2)S1-S2的值是定值,S1-S2=4.【解析】

(1)①△EBF是等边三角形.连接BD,证明△ABE≌△DBF(ASA)即可解决问题.②如图1中,作BH⊥AD于H.求出△ABE的面积,利用三角形的面积公式求出AE即可解决问题.(2)如图2中,结论:S1-S2的值是定值.想办法证明:S1-S2=S△BCD即可.【详解】解:(1)①△EBF是等边三角形.理由如下:如图1中,连接BD,∵四边形ABCD是菱形,∴AD=AB,∵∠ADB=60°,∴△ADB是等边三角形,△BDC是等边三角形,∴AB=BD,∠ABD=∠A=∠BDC=60°,∵∠ABD=∠EBF=60°,∴∠ABE=∠DBF,在△ABE和△DBF中,,∴△ABE≌△DBF(ASA),∴BE=BF,∵∠EBF=60°,∴△EBF是等边三角形.②如图1中,作BH⊥AD于H.在Rt△ABH中,BH=2,∴S△ABD=•AD•BH=4,∵S四边形ABFD=7,∴S△BDF=S△ABE=3,∴=3,∴AE=3,∴DE=AD=AE=1.(2)如图2中,结论:S1-S2的值是定值.理由:∵△BDC,△EBF都是等边三角形,∴BD=BC,∠DBC=∠EBF=60°,BE=BF,∴∠DBE=∠CBF,∴△DBE≌△CBF(SAS),∴S△BDE=S△BCF,∴S1-S2=S△BDE+S△BOC-S△DOE=S△DOE+S△BOD+S△BOC-S△DOE=S△BCD=×42=4.故S1-S2的值是定值.【点睛】本题属于四边形综合题,考查了菱形的性质,等边三角形的判定和性质,全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.22、10个【解析】

设全年级共有2n个班级,则每一大组有n个班,每个班需参加(n-1)场比赛,则共有n(n-1)×场比赛,可以列出一个一元二次方程.【详解】解:设全年级个班,由题意得:,解得或(舍),,答:全年级一共10个班.【点睛】本题主要考查了有实际问题抽象出一元二次方程,解决本题的关键是得到比赛总场数的等量关系,注意2队之间的比赛只有1场,最后的总场数应除以2.23、见解析【解析】分析:由平行四边形的性质得出AB∥CD,AD=BC,由平行线的性质得出∠E=∠DCE,由已知条件得出BE=BC,由等腰三角形的性质得出∠E=∠BCE,得出∠DCE=∠BCE即可.详解:∵四边形ABCD是平行四边形,∴AB∥CD,AD=BC,∴∠E=∠DCE,∵BE=AD,∴BE=BC,∴∠E=∠BCE,∴∠DCE=∠BCE,即CE平分∠BCD.点睛:本题考查了平行四边形的性质、等腰三角形的判定与性质、平行线的性质;熟练掌握平行四边形的性质,证出∠E=∠BCE是解决问题的关键.24、(1)直线的解析式是y=2x-1;(2)与y轴交点(0,-1),与x轴交点.【解析】分析:(1)设函数解析式为y=kx+b,利用待定系数法可求得k、b的值,可求得一次函数解析式;(2)分别令x=0和y=0,可求得图象与y轴和x轴的交点坐标.详解:(1)设一次函数解析式为y=kx+b(k≠0),把点(3,5),(﹣4,﹣9)分别代入解析式可得:,解得:,∴一次函数解析式为y=2x﹣1;(2)当x=0时,y=﹣1,当y=0时,2x﹣1=0,解得:x=,∴函数图象与坐标轴的交点为(0,﹣1),(,0).点睛:本题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论