




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
那曲市重点中学2024年数学八年级下册期末质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列给出的四个点中,不在直线y=2x-3上的是()A.(1,-1) B.(0,-3) C.(2,1) D.(-1,5)2.如图所示,函数和的图象相交于(–1,1),(2,2)两点.当时,x的取值范围是()A.x<–1 B.x<–1或x>2 C.x>2 D.–1<x<23.的平方根是()A. B. C. D.4.下列图象中,表示y是x的函数的是()A. B. C. D.5.化简的结果是().A. B. C. D.6.若线段2a+1,a,a+3能构成一个三角形,则a的范围是()A.a>0 B.a>1 C.a>2 D.1<a<37.已知一次函数y=2x+a,y=﹣x+b的图象都经过A(﹣2,0),且与y轴分别交于B、C两点,则△ABC的面积为()A.4 B.5 C.6 D.78.下列图案,既是轴对称图形又是中心对称图形的个数是().A.1 B.2 C.3 D.49.下列函数,y随x增大而减小的是()A.y=xB.y=x10.下列多项式中能用完全平方公式分解的是A. B. C. D.11.如图,在正方形ABCD外取一点E,连接AE、BE、DE,过A作AE的垂线交ED于点P,若AE=AP=1,PB=,下列结论:①△APD≌△AEB;②EB⊥ED;③PD=,其中正确结论的序号是()A.①② B.①③ C.②③ D.①②③12.若分式有意义,则的取值范围是()A. B. C. D.二、填空题(每题4分,共24分)13.有10个数据的平均数为12,另有20个数据的平均数为15,那么所有这30个数据的平均数是________.14.甲乙两地9月上旬的日平均气温如图所示,则甲乙两地这10天日平均气温方差大小关系为________.(填“>”或“<”)15.下表是某校女子羽毛球队队员的年龄分布:年龄/岁13141516人数1121则该校女子排球队队员年龄的中位数为__________岁.16.如图,在中,和的角平分线相交于点,若,则的度数为______.17.已知三角形两边长分别为2,3,那么第三边的长可以是___________.18.如图,□ABCD的对角线AC,BD相交于点O,点E是CD的中点,△ABD的周长为16cm,则△DOE的周长是_________;三、解答题(共78分)19.(8分)如图,在四边形ABCD中,AB=AD=,∠A=90º,∠CBD=30º,∠C=45º,求BD及CD的长.20.(8分)如图,已知ABC,利用尺规在AC边上求作点D,使AD=BD(保留作图痕迹,不写作法)21.(8分)如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,在现有网格中,以格点为顶点,分别按下列要求画三角形。(1)在图1中,画一个等腰直角三角形,使它的面积为5;(2)在图2中,画一个三角形,使它的三边长分别为3,2,;(3)在图3中,画一个三角形,使它的三边长都是有理数.22.(10分)已知矩形中,两条对角线的交点为.(1)如图1,若点是上的一个动点,过点作于点,于点,于点,试证明:;(2)如图②,若点在的延长线上,其它条件和(1)相同,则三者之间具有怎样的数量关系,请写出你的结论并证明.23.(10分)小王开了一家便利店,今年1月份开始盈利,2月份盈利5000元,4月份的盈利达到7200元,且从2月到4月,每月盈利的平均增长率都相同.(1)求每月盈利的平均增长率;(2)按照这个平均增长率,预计5月份这家商店的盈利达到多少元?24.(10分)在学校组织的知识竞赛中,八(1)班比赛成绩分为A,B,C,D四个等级,其中相应等级的得分依次记为100分,90分,80分,70分,学校将八(1)班成绩整理并绘制成如下的统计图.请你根据以上提供的信息解答下列问题:(1)请根据统计图的信息求出成绩为C等级的人数;(2)将表格补充完整.25.(12分)阅读材料:关于的方程:的解为:,(可变形为)的解为:,的解为:,的解为:,…………根据以上材料解答下列问题:(1)①方程的解为.②方程的解为.(2)解关于方程:①()②()26.如图,已知AD∥BC,AB⊥BC,AB=BC=4,P为线段AB上一动点.将△BPC沿PC翻折至△EPC,延长CE交射线AD于点D(1)如图1,当P为AB的中点时,求出AD的长(2)如图2,延长PE交AD于点F,连接CF,求证:∠PCF=45°(3)如图3,∠MON=45°,在∠MON内部有一点Q,且OQ=8,过点Q作OQ的垂线GH分别交OM、ON于G、H两点.设QG=x,QH=y,直接写出y关于x的函数解析式
参考答案一、选择题(每题4分,共48分)1、D【解析】只需把每个点的横坐标即x的值分别代入y=2x-3,计算出对应的y值,然后与对应的纵坐标比较即可A、当x=1时,y=-1,(1,-1)在直线y=2x-3上;B、当x=0时,y=-3,(0,-3)在直线y=2x-3上;C、当x=2时,y=1,(2,1)在直线y=2x-3上;D、当x=-1时,y=-5,(-1,5)不在直线y=2x-3上.故选D.2、B【解析】试题解析:当x≥0时,y1=x,又,∵两直线的交点为(1,1),∴当x<0时,y1=-x,又,∵两直线的交点为(-1,1),由图象可知:当y1>y1时x的取值范围为:x<-1或x>1.故选B.3、B【解析】
根据开平方的意义,可得一个数的平方根.【详解】解:9的平方根是±3,
故选:B.【点睛】本题考查了平方根,乘方运算是解题关键,注意平方根是两个互为相反的数.4、C【解析】
函数就是在一个变化过程中有两个变量x,y,当给x一个值时,y有唯一的值与其对应,就说y是x的函数,x是自变量.注意“y有唯一的值与其对应”对图象的影响.【详解】解:根据函数的定义可知,每给定自变量x一个值都有唯一的函数值y相对应,所以A.B.D错误.故选C.【点睛】本题考查了函数的概念,牢牢掌握函数的概念是解答本题的关键.5、B【解析】
根据三角形法则计算即可解决问题.【详解】解:原式,故选:B.【点睛】本题考查平面向量、三角形法则等知识,解题的关键是灵活运用三角形法则解决问题,属于中考基础题.6、B【解析】
根据三角形三边关系:任意两边之和大于第三边列出不等式组,解不等式组即可得出a的取值范围.【详解】解:由题意,得,解得a>1.故选B.7、C【解析】根据题意得:a=4,b=-2,所以B(0,4),C(0,-2),则△ABC的面积为故选C.8、C【解析】
根据轴对称图形与中心对称图形的概念求解.【详解】解:第一个图形是轴对称图形,是中心对称图形;
第二个图形是轴对称图形,不是中心对称图形;
第三个图形是轴对称图形,是中心对称图形;
第四个图形是轴对称图形,是中心对称图形.
共有3个图形既是轴对称图形,也是中心对称图形,
故选:C.【点睛】此题主要考查了中心对称图形与轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;判断中心对称图形是要寻找对称中心,旋转180度后与原图重合.9、D【解析】试题分析:∵y=kx+b中,k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小,A选项中,k=1>0,故y的值随着x值的增大而增大;B选项中,k=1>0,故y的值随着x值的增大而增大;C选项中,k=1>0,故y的值随着x值的增大而增大;D选项中,k=-1<0,y的值随着x值的增大而减小;故选D.考点:一次函数的性质.10、B【解析】
根据完全平方公式的结构特征判断即可.【详解】选项A、C、D都不能够用完全平方公式分解,选项B能用完全平方公式分解,即.故选B.【点睛】本题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.11、A【解析】
①利用同角的余角相等,易得∠EAB=∠PAD,再结合已知条件利用SAS可证两三角形全等;②利用①中的全等,可得∠APD=∠AEB,结合三角形的外角的性质,易得∠BEP=90°,即可证;③在Rt△AEP中,利用勾股定理,可求得EP、BE的长,再依据△APD≌△AEB,即可得出PD=BE,据此即可判断.【详解】①∵∠EAB+∠BAP=90°,∠PAD+∠BAP=90°,∴∠EAB=∠PAD,又∵AE=AP,AB=AD,∴△APD≌△AEB,故①正确;②∵△APD≌△AEB,∴∠APD=∠AEB,又∵∠AEB=∠AEP+∠BEP,∠APD=∠AEP+∠PAE,∴∠BEP=∠PAE=90°,∴EB⊥ED,故②正确;③在Rt△AEP中,∵AE=AP=1,∴EP=,又∵PB=,∴BE=,∵△APD≌△AEB,∴PD=BE=,故③错误,故选A.【点睛】本题考查了全等三角形的判定与性质、正方形的性质、三角形面积、勾股定理等,综合性质较强,有一定的难度,熟练掌握相关的性质与定理是解题的关键.12、A【解析】
根据分式有意义的条件:分母不等于0,即可求解.【详解】解:根据题意得:x-1≠0,
解得:x≠1.
故选:A.【点睛】此题考查分式有意义的条件,正确理解条件是解题的关键.二、填空题(每题4分,共24分)13、14.【解析】试题分析:根据加权平均数计算公式可得.考点:加权平均数.14、>【解析】
观察平均气温统计图可知:乙地的平均气温比较稳定,波动小;波动越小越稳定.【详解】解:观察平均气温统计图可知:乙地的平均气温比较稳定,波动小;则乙地的日平均气温的方差小,故S2甲>S2乙.故答案为:>.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定.反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.15、15.【解析】
中位数有2种情况,共有2n+1个数据时,从小到大排列后,,中位数应为第n+1个数据,可见,大于中位数与小于中位数的数据都为n个;共有2n+2个数据时,从小到大排列后,中位数为中间两个数据平均值,大小介于这两个数据之间,可见大于中位数与小于中位数的数据都为n+1个,所以这组数据中大于或小于这个中位数的数据各占一半,中位数有一个.【详解】解:总数据有5个,中位数是从小到大排,第3个数据为中位数,即15为这组数据的中位数.故答案为:15【点睛】本题考查中位数的定义,解题关键是熟练掌握中位数的计算方法,即中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).16、70°【解析】
根据三角形的内角和等于180°,求出∠OBC+∠OCB,再根据角平分线的定义求出∠ABC+∠ACB,然后利用三角形的内角和等于180°,列式计算即可得解.【详解】解:∵,∴∠OBC+∠OCB=180°-125°=55°,∵BO平分∠ABC,CO平分∠ACB,∴∠ABC=2∠OBC,∠ACB=2∠OCB,∴∠ABC+∠ACB=2(∠OBC+∠OCB)=110°,∴∠A=180°-110°=70°;故答案为:70°.【点睛】此题考查了三角形的内角和定理,角平分线的定义,整体思想的利用是解题的关键.17、2(答案不唯一).【解析】
根据三角形的三边关系可得3-2<第三边长<3+2,再解可得第三边的范围,然后可得答案.【详解】解:设第三边长为x,由题意得:3-2<x<3+2,解得:1<x<1.故答案为:2(答案不唯一).【点睛】此题主要考查了三角形的三边关系,关键是掌握三角形两边之和大于第三边,三角形的两边差小于第三边.18、8【解析】
∵四边形ABCD是平行四边形,∴O是BD中点,△ABD≌△CDB,又∵E是CD中点,∴OE是△BCD的中位线,∴OE=BC,即△DOE的周长=△BCD的周长,∴△DOE的周长=△DAB的周长.∴△DOE的周长=×16=8cm.三、解答题(共78分)19、BD=2;CD=【解析】
过点D作DE⊥BC于E,根据等腰直角三角形的性质求出AD、BD,再根据直角三角形30°角所对的直角边等于斜边的一半求出DE,利用△CDE是等腰直角三角形,即可求出CD的长.【详解】解:如图,过点D作DE⊥BC于E,∵∠A=90°,AD=AB=,∴由勾股定理可得:BD=,∵∠CBD=30°,DEBE,∴DE=BD=×2=1,又∵Rt△CDE中,∠DEC=90°,∠C=45°,∴CE=DE=1,∴由勾股定理可得CD=.【点睛】本题考查了勾股定理,直角三角形30°角所对的直角边等于斜边的一半的性质,以及等腰直角三角形的性质,通过作辅助线,把△BCD分成两个直角三角形是解题的关键,也是本题的难点.20、见解析【解析】
根据尺规作线段垂直平分线的作法,作出AB的垂直平分线与AC的交点,即可.【详解】如图所示:∴点D即为所求.【点睛】本题主要考查线段的垂直平分线的尺规作图,熟练掌握线段的中垂线尺规作图的基本步骤,是解题的关键.21、(1)详见解析;(2)详见解析;(3)详见解析;【解析】
(1)画一个边长为的直角三角形即可;(2)利用勾股定理画出三角形即可;(3)画一个三边长为3,4,5的三角形即可.【详解】(1)如图所示;(2)如图所示;(3)如图所示.【点睛】此题考查勾股定理,作图—应用与设计作图,解题关键在于掌握作图法则.22、(1)证明见解析;(2),证明见解析【解析】
(1)过作于点,根据矩形的判定和性质、全等三角形的判定和性质进行推导即可得证结论;(2)先猜想结论为,过作于点,根据矩形的判定和性质、角平分线的性质进行推导即可得证猜想.【详解】解:证明:(1)过作于点,如图:∵,∴四边形是矩形∴,∴∵四边形是矩形∴,且互相平分∴∴∵,∴∵∴∴∴,即.(2)结论:证明:过作于点,如图:同理可证,∵,∴∴,即.【点睛】本题考查了矩形的判定和性质、全等三角形的判定和性质、角平分线的性质、线段.的和差等知识点,适当添加辅助线是解决问题的关键.23、(1);(2)8640元.【解析】
(1)设该商店的月平均增长率为x,根据等量关系:2月份盈利额×(1+增长率)2=4月份的盈利额列出方程求解即可.
(2)5月份盈利=4月份盈利×增长率.【详解】解:(1)设每月盈利平均增长率为,根据题意得:,解得:(不符合题意舍去)答:每月盈利的平均增长率为;(2),答:按照这个平均增长率,预计5月份这家商店的盈利将达到8640元.【点睛】本题考查的是二次方程的实际应用,熟练掌握二次方程是解题的关键.24、(1)2;(2)表格见解析.【解析】【分析】(1)根据D等级的人数以及所占的比例求出八(1)班参赛人数,然后用C等级的比例乘以参赛人数即可求得C等级的人数;(2)结合各等级的人数根据中位数和众数的定义进行求解后填表即可.【详解】(1)5÷20%=25(人),25×8%=2(人),所以C等级的人数为2人;(2)观察可知B等级的人数最多,所以众数为90,一共有25个数据,排序后中位数是第13个数据,6<13,6+12>13所以中位数是90,故答案为:【点睛】本题考查了条形统计图、扇形统计图、中位数以及众数等知识,读懂统计图,从图形找到必要的信息是解题的关键.25、(1)①,;②,;(2)①,;②,.【解析】试题分析:(1)①令第一个方程中的a=2即可得到答案;②把(x-1)看成一个整体,利用第一个方程的规律即可得出答案;(2)①等式两边减去1,把(x-1)和(a-1)分别看成是整体,利用第三个方程的规律即可得出答案;②等式两边减去2,把(x-2)和(a-2)分别看成是整体,利用第二个方程和第四个方程的规律即可得出答案.试题解析:解:(1)①由第一个方程规律可得:x1=2,x2=;②根据第一个方程规律可得:x-1=3或x-1=,∴x1=4,x2=;(2)①方程两边减1得:(x-1)+=(a-1)+,∴x-1=a-1或x-1=,∴:x1=a,x2=;②方程两边减2得:(x-2)+=(a-2)+,∴∴x-2=a-2或x-2=,∴:x1=a,x2=.点睛:此题考查了分式方程的解,属于规律型试题,弄清题中的规律是解本题的关键.26、(1)1;(2)见解析;(3)【解析】
(1)如图1.根据平行线的性质得到∠A=∠B=90°,由折叠的性质得到∠CEP=∠B=90°,PB=PE,∠BPC=∠EPC,根据全等三角形的性质得到∠
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 吉林省长春市绿园区经开实验小学2024-2025学年小升初数学综合练习卷含解析
- 湖北省襄樊市2024-2025学年高三一模金卷物理试题分项解析版含解析
- 浙江商业职业技术学院《精算数学》2023-2024学年第二学期期末试卷
- 上海市闵行八校2025年高三下学期第一次周考英语试题含解析
- 山东化工职业学院《电机原理及其运行与维护》2023-2024学年第二学期期末试卷
- 郑州理工职业学院《数学模型与数学实验》2023-2024学年第二学期期末试卷
- 江西应用技术职业学院《建筑给排水工程课程设计》2023-2024学年第二学期期末试卷
- 山东省临沂市19中2024-2025学年高考二轮物理试题1-4月复习专号数理报含解析
- 专题24 四边形压轴综合(3大考点)2022-2024年中考数学真题分类
- 审计个人工作述职报告(7篇)
- 重症血液净化血管通路的建立与应用中国专家共识解读2025
- 浙江省台州市和合联盟2023-2024学年八年级下学期期中考试数学试题(含答案)
- 蒙古语中的时间表达方式研究论文
- 输电线路铁塔基础强度加固方案
- 食品过敏原控制培训资料
- 《图像识别技术及其应用》课件
- 2025年小学生三年级语文家长会标准课件
- 4.2 明确概念的方法 课件-2高中政治统编版选择性必修三逻辑与思维-1
- 《豆浆机设计方案》课件
- (高清版)DB21∕T 2481-2015 水利工程单元工程施工质量检验与评定标准-农村水利工程
- 消防技术标准的解读与应用实例
评论
0/150
提交评论