版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024年贵州省清镇市卫城中学数学八年级下册期末监测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.对于数据3,3,1,3,6,3,10,3,6,3,1.①这组数据的众数是3;②这组数据的众数与中位数的数值不等;③这组数据的中位数与平均数的数值相等;④这组数据的平均数与众数的数值相等,其中正确的结论有()A.1个 B.1个 C.3个 D.4个2.若A(2,y1),B(3,y2)是一次函数y=-3x+1的图象上的两个点,则y1与y2的大小关系是()A.y1<y2 B.y1=y2 C.y1>y2 D.不能确定3.关于抛物线与的说法,不正确的是()A.与的顶点关于轴对称B.与的图像关于轴对称C.向右平移4个单位可得到的图像D.绕原点旋转可得到的图像4.如图,在菱形ABCD中,AB=5,∠BCD=120°,则△ABC的周长等于()A.20 B.15 C.10 D.55.如图,点A,B为定点,定直线l//AB,P是l上一动点.点M,N分别为PA,PB的中点,对于下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是()A.②③ B.②⑤ C.①③④ D.④⑤6.下列各式中,y不是x的函数的是A. B. C. D.7.已知关于x的一次函数y=kx+2k-3的图象经过原点,则k的值为()A. B. C. D.8.化简12的结果是()A.43 B.23 C.32 D.269.下列各式从左到右的变形中,是因式分解的为()A. B.C. D.10.九(2)班“环保小组”的5位同学在一次活动中捡废弃塑料袋的个数分别为:4,6,8,16,16。这组数据的中位数、众数分别为()A.16,16 B.10,16 C.8,8 D.8,16二、填空题(每小题3分,共24分)11.化简得_____________.12.一次函数的图象与轴的交点坐标是________.13.如图,已知∠AOB=30°,P是∠AOB平分线上一点,CP∥OB,交OA于点C,PD⊥OB,垂足为点D,且PC=4,则PD等于_____.14.请写出的一个同类二次根式:________.15.若分式的值是0,则x的值为________.16.如图,在Rt△ABC中,∠BAC=90°,AB=6,AC=8,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值是________
.
17.已知点P(m-3,m+1)在第二象限,则m的取值范围是_______________.18.如图,在菱形ABCD中,E,F分别是AD,BD的中点,若EF=2,则菱形ABCD的周长是__.三、解答题(共66分)19.(10分)某商店计划购进A、B两种型号的电动自行车共30辆,其中A型电动自行车不少于20辆,A、B两种型号电动自行车的进货单价分别为2500元、3000元,售价分别为2800元、3500元,设该商店计划购进A型电动自行车m辆,两种型号的电动自行车全部销售后可获利润y元.(1)求出y与m之间的函数关系式;(2)该商店如何进货才能获得最大利润?此时最大利润是多少元?20.(6分)下面是小明化简的过程解:=①=②=﹣③(1)小明的解答是否正确?如有错误,错在第几步?(2)求当x=时原代数式的值.21.(6分)在菱形ABCD中,∠BAD=60°.(1)如图1,点E为线段AB的中点,连接DE,CE,若AB=4,求线段EC的长;(2)如图2,M为线段AC上一点(M不与A,C重合),以AM为边,构造如图所示等边三角形AMN,线段MN与AD交于点G,连接NC,DM,Q为线段NC的中点,连接DQ,MQ,求证:DM=2DQ.22.(8分)甲、乙两家文化用品商场平时以同样价格出售相同的商品.六一期间两家商场都让利酬宾,其中甲商场所有商品一律按8折出售,乙商场对一次购物中超过200元后的价格部分打7折.(1)分别写出两家商场购物金额(元)与商品原价(元)的函数解析式;(2)在如图所示的直角坐标系中画出(1)中函数的图象;(3)六一期间如何选择这两家商场购物更省钱?23.(8分)如图,▱ABCD中,AB=2cm,AC=5cm,S▱ABCD=8cm2,E点从B点出发,以1cm每秒的速度,在AB延长线上向右运动,同时,点F从D点出发,以同样的速度在CD延长线上向左运动,运动时间为t秒.(1)在运动过程中,四边形AECF的形状是____;(2)t=____时,四边形AECF是矩形;(3)求当t等于多少时,四边形AECF是菱形.24.(8分)如图,正方形,点为对角线上一个动点,为边上一点,且.(1)求证:;(2)若四边形的面积为25,试探求与满足的数量关系式;(3)若为射线上的点,设,四边形的周长为,且,求与的函数关系式.25.(10分)(1)计算:;(2)解方程:.26.(10分)如图所示的一块地,AD=8m,CD=6m,∠ADC=90°,AB=26m,BC=24m.求这块地的面积.
参考答案一、选择题(每小题3分,共30分)1、A【解析】
将这组数据从小到大排列为:1,1,2,2,2,2,2,2,6,6,10,共11个数,所以第6个数据是中位数,即中位数为2.数据2的个数为6,所以众数为2.平均数为,由此可知(1)正确,(1)、(2)、(4)均错误,故选A.2、C【解析】
先根据一次函数的解析式判断出函数的增减性,再根据1<3即可得出结论.【详解】解:∵一次函数y=-3x+1中,k=-3<0,∴y随着x的增大而减小.∵A(1,y1),B(3,y1)是一次函数y=-3x+1的图象上的两个点,1<3,∴y1>y1.故选:C.【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.也考查了一次函数的性质.3、D【解析】
利用对称变换和平移变换法则,分析两条抛物线的位置关系,即可做出选择..【详解】解:A,与,当纵坐标相同,横坐标互为相反数,故正确;B,与,当纵坐标相同,横坐标互为相反数,故正确;C,与的对称轴分别为x=-2和x=2,故正确;D,绕原点旋转,只是开口方向发生变化,故D错误;故答案为D.【点睛】本题考查的知识点是二次函数的图象和性质,其中熟练的掌握给定函数解析式求顶点坐标,对称轴方程和开口方向的方法,是解答的关键.4、B【解析】∵ABCD是菱形,∠BCD=120°,∴∠B=60°,BA=BC.∴△ABC是等边三角形.∴△ABC的周长=3AB=1.故选B5、B【解析】试题分析:①、MN=AB,所以MN的长度不变;②、周长C△PAB=(AB+PA+PB),变化;③、面积S△PMN=S△PAB=×AB·h,其中h为直线l与AB之间的距离,不变;④、直线NM与AB之间的距离等于直线l与AB之间的距离的一半,所以不变;⑤、画出几个具体位置,观察图形,可知∠APB的大小在变化.故选B考点:动点问题,平行线间的距离处处相等,三角形的中位线6、D【解析】
在运动变化过程中,有两个变量x和y,对于x的每一个值y都有唯一确定的值与之对应,那么y是x的函数,x是自变量.【详解】A.,B.,C.,对于x的每一个值,y都有唯一确定的值与之对应,符合函数的定义,不符合题意,D.,对于x的每一个值,y都有两个确定的值与之对应,故不是函数,本选项符合题意.故选:D【点睛】本题考核知识点:函数.解题关键点:理解函数的定义.7、B【解析】
将原点代入一次函数的解析式中,建立一个关于k的方程,解方程即可得出答案.【详解】∵关于x的一次函数y=kx+2k-3的图象经过原点,∴,解得,故选:B.【点睛】本题主要考查一次函数,掌握一次函数图像上的点符合一次函数的解析式是解题的关键.8、B【解析】试题解析:12=故选B.考点:二次根式的化简.9、D【解析】
根据把整式变成几个整式的积的过程叫因式分解进行分析即可.【详解】A、是整式的乘法运算,不是因式分解,故A不正确;B、是积的乘方,不是因式分解,故B不正确;C、右边不是整式乘积的形式,故C不正确;D、是按照平方差公式分解的,符合题意,故D正确;故选:D.【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式乘积的形式,注意因式分解与整式乘法的区别.10、D【解析】
根据众数和中位数的定义求解.找出次数最多的数为众数;把5个数按大小排列,位于中间位置的为中位数.【详解】解:在这一组数据中16是出现次数最多的,故众数是16;而将这组数据从小到大的顺序排列后,处于中间位置的数是1,那么由中位数的定义可知,这组数据的中位数是1.
故选:D.【点睛】本题考查统计知识中的中位数和众数的定义.将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.一组数据中出现次数最多的数据叫做众数.二、填空题(每小题3分,共24分)11、【解析】
利用二次根式的性质进行化简即可.【详解】解:.故答案为.点睛:本题考查了二次根式的化简.熟练应用二次根式的性质对二次根式进行化简是解题的关键.12、(0,-3).【解析】
令x=0,求出y的值即可得出结论.【详解】解:当x=0时,y=-3∴一次函数的图象与y轴的交点坐标是(0,-3).故答案为:(0,-3).【点睛】本题考查的是一次函数图形上点的特征,熟知一次函数图象与坐标轴交点的算法是解答此题的关键.13、1【解析】
作PE⊥OA于E,根据三角形的外角的性质得到∠ACP=30°,根据直角三角形的性质得到PE=PC=1,根据角平分线的性质解答即可.【详解】作PE⊥OA于E,∵CP∥OB,∴∠OPC=∠POD,∵P是∠AOB平分线上一点,∴∠POA=∠POD=15°,∴∠ACP=∠OPC+∠POA=30°,∴PE=PC=1,∵P是∠AOB平分线上一点,PD⊥OB,PE⊥OA,∴PD=PE=1,故答案为:1.【点睛】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.14、【解析】试题分析:因为,所以与是同类二次根式的有:,….(答案不唯一).考点:1.同类二次根式;2.开放型.15、3【解析】
根据分式为0的条件解答即可,【详解】因为分式的值为0,所以∣x∣-3=0且3+x≠0,∣x∣-3=0,即x=3,3+x≠0,即x≠-3,所以x=3,故答案为:3【点睛】本题考查分式值为0的条件:分式的分子为0,且分母不为0,熟练掌握分式值为0的条件是解题关键.16、【解析】
根据矩形的性质就可以得出EF,AP互相平分,且EF=AP,根据垂线段最短的性质就可以得出AP⊥BC时,AP的值最小,即AM的值最小,由勾股定理求出BC,根据面积关系建立等式求出其解即可.【详解】解:∵PE⊥AB,PF⊥AC,∠BAC=90°,∴∠EAF=∠AEP=∠AFP=90°,∴四边形AEPF是矩形,∴EF,AP互相平分.且EF=AP,∴EF,AP的交点就是M点,∵当AP的值最小时,AM的值就最小,∴当AP⊥BC时,AP的值最小,即AM的值最小.∵AP×BC=AB×AC,∴AP×BC=AB×AC,在Rt△ABC中,由勾股定理,得BC==10,∵AB=6,AC=8,∴10AP=6×8,∴AP=∴AM=,故答案为:.考点:(1)、矩形的性质的运用;(2)、勾股定理的运用;(3)、三角形的面积公式17、﹣1<m<1【解析】试题分析:让点P的横坐标小于0,纵坐标大于0列式求值即可.解:∵点P(m﹣1,m+1)在第二象限,∴m﹣1<0,m+1>0,解得:﹣1<m<1.故填:﹣1<m<1.【点评】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).18、1【解析】试题分析:先利用三角形中位线性质得到AB=4,然后根据菱形的性质计算菱形ABCD的周长.∵E,F分别是AD,BD的中点,∴EF为△ABD的中位线,∴AB=2EF=4,∵四边形ABCD为菱形,∴AB=BC=CD=DA=4,∴菱形ABCD的周长=4×4=1.考点:(1)菱形的性质;(2)三角形中位线定理.三、解答题(共66分)19、(1)=﹣200+15000(20≤m<30);(2)购进A型电动自行车20辆,购进B型10辆,最大利润是11000元.【解析】
(1)利润=一辆A型电动自行车的利润×A型电动自行车的数量+一辆B型电动自行车的利润×B型电动自行车的数量,依此列式化简即可;(2)根据一次函数的性质,结合自变量的取值范围即可求解;【详解】解:(1)计划购进A型电动自行车辆,B型电动自行车(30-)辆,=(2800-2500)m+(3500﹣3000)(30﹣m),=﹣200+15000(20≤m<30),(2)∵20≤<30,且随的增大而减小可得,=20时,有最大值,=﹣200×20+15000=11000,购进A型电动自行车20辆,购进B型10辆,最大利润是11000元.【点睛】本题考查了一次函数的应用,解题的关键是求出y与m之间的函数关系式.20、(1)第①步(2)【解析】
(1)根据分式的乘除法可以明确小明在哪一步出错了,从而可以解答本题;
(2)根据分式的乘除法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【详解】(1)小明的解答不正确,错在第①步;(2)==,当x=时,原式=.【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.21、(1)2(2)证明见解析【解析】试题分析:(1)如图1,连接对角线BD,先证明△ABD是等边三角形,根据E是AB的中点,由等腰三角形三线合一得:DE⊥AB,利用勾股定理依次求DE和EC的长;(2)如图2,作辅助线,构建全等三角形,先证明△ADH是等边三角形,再由△AMN是等边三角形,得条件证明△ANH≌△AMD(SAS),则HN=DM,根据DQ是△CHN的中位线,得HN=2DQ,由等量代换可得结论.试题解析:解:(1)如图1,连接BD,则BD平分∠ABC,∵四边形ABCD是菱形,∴AD∥BC,∴∠A+∠ABC=180°,∵∠A=60°,∴∠ABC=120°,∴∠ABD=∠ABC=60°,∴△ABD是等边三角形,∴BD=AD=4,∵E是AB的中点,∴DE⊥AB,由勾股定理得:DE==,∵DC∥AB,∴∠EDC=∠DEA=90°,在Rt△DEC中,DC=4,EC===;(2)如图2,延长CD至H,使CD=DH,连接NH、AH,∵AD=CD,∴AD=DH,∵CD∥AB,∴∠HDA=∠BAD=60°,∴△ADH是等边三角形,∴AH=AD,∠HAD=60°,∵△AMN是等边三角形,∴AM=AN,∠NAM=60°,∴∠HAN+∠NAG=∠NAG+∠DAM,∴∠HAN=∠DAM,在△ANH和△AMD中,∵AH=AD,∠HAN=∠DAM,AN=AM,∴△ANH≌△AMD(SAS),∴HN=DM,∵D是CH的中点,Q是NC的中点,∴DQ是△CHN的中位线,∴HN=2DQ,∴DM=2DQ.点睛:本题考查了菱形的性质、三角形的中位线、三角形全等的性质和判定、等边三角形的性质和判定,本题证明△ANH≌△AMD是关键,并与三角形中位线相结合,解决问题;第二问有难度,注意辅助线的构建.22、(1)甲商场:y=0.8x,乙商场:y=x(0≤x≤200),y=0.7x+60(x>200);(2)详见解析;(3)详见解析.【解析】
(1)根据题中描述的数量关系分别写出甲商场和乙商场中,y与x的函数关系即可(其中乙商场需分0≤x≤200和x>200两段分别讨论);(2)根据(1)中所得函数关系式按要求画出函数图象即可;(3)根据(1)中所得函数关系式分0.8x<0.7x+60、0.8x=0.7x+60、0.8x>0.7x+60三种情况进行解答即可得到相应的结论.【详解】解:(1)甲商场:y=0.8x,乙商场:y=x(0≤x≤200),y=0.7(x﹣200)+200=0.7x+60,即y=0.7x+60(x>200);(2)如图所示;(3)①由0.8x<0.7x+60解得:x<600;②由0.8x=0.7x+60解得:x=600;③由0.8x>0.7x+60解得x>600,∴当x=600时,甲、乙商场购物花钱相等;当x<600时,在甲商场购物更省钱;当x>600时,在乙商场购物更省钱.【点睛】本题考查了一次函数的应用,解决第(1)小题时,需注意乙商场中:y与x的函数关系式需分0≤x≤200和x>200两段分别讨论;解第(2)小题时,需分三种情况分别讨论,再作出相应的结论.23、(1)四边形AECF是平行四边形;理由见解析;(2)t=1;(3)t=【解析】
(1)由平行四边形的性质得出AB=CD=2cm,AB∥CD,由已知条件得出CF=AE,即可得出四边形AECF是平行四边形;(2)若四边形AECF是矩形,则∠AFC=90°,得出AF⊥CD,由平行四边形的面积得出AF=4cm,在Rt△ACF中,由勾股定理得出方程,解方程即可;(3)当AE=CE时,四边形AECF是菱形.过C作CG⊥BE于G,则CG=4cm,由勾股定理求出AG,得出GE,由勾股定理得出方程,解方程即可.【详解】解:(1)四边形AECF是平行四边形;理由如下:∵四边形ABCD是平行四边形,∴AB=CD=2cm,AB∥CD,∴CF∥AE,∵DF=BE,∴CF=AE,∴四边形AECF是平行四边形;故答案为:平行四边形;(2)t=1时,四边形AECF是矩形;理由如下:若四边形AECF是矩形,∴∠AFC=90°,∴AF⊥CD,∵S▱ABCD=CD•AF=8cm2,∴AF=4cm,在Rt△ACF中,AF2+CF2=AC2,即42+(t+2)2=52,解得:t=1,或t=-5(舍去),∴t=1;故答案为:1;(3)依题意得:AE平行且等于CF,∴四边形AECF是平行四边形,故AE=CE时,四边形AECF是菱形.又∵BE=tcm,∴AE=CE=t+2(cm),过C作CG⊥BE于G,如图所示:则CG=4cmAG==3(cm),∴GE=t+2-3=t-1(cm),在△CGE中,由勾股定理得:CG2+GE2=CE2=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度公路建设廉政承诺及交通安全管理合同3篇
- 二零二五年度带物业费结算与社区配套的二手房屋个人买卖合同3篇
- 二零二五年度智能家居生活体验个人住房租赁服务协议3篇
- 远程监控技术课程设计
- 应用文启事课程设计
- 二零二五年度市场营销战略合同3篇
- 二零二五年度公路运输物流信息化平台建设合同3篇
- 英国文物修复课程设计
- 2025年度生猪养殖与电子商务平台合作合同3篇
- 二零二五年度新型城镇化项目配套基础设施建设国有土地租赁合同3篇
- 农业机械培训课件
- 河南省郑州市2023-2024学年高二上学期期末考试英语试题 附答案
- 2023年年北京市各区初三语文一模分类试题汇编 - 作文
- 2024年度心理辅导合作协议模板版
- GB/T 22723-2024天然气能量的测定
- 能源岗位招聘笔试题与参考答案(某大型国企)2024年
- 航空与航天学习通超星期末考试答案章节答案2024年
- 麻醉苏醒期躁动患者护理
- 英语雅思8000词汇表
- 2024年《13464电脑动画》自考复习题库(含答案)
- 2025年辽宁中考语文复习专项训练:文言文阅读(含解析)
评论
0/150
提交评论