版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届甘肃省兰州十九中学教育集团八年级数学第二学期期末质量跟踪监视模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.若使二次根式在实数范围内有意义,则的取值范围是()A. B. C. D.2.分别顺次连接①平行四边形②矩形③菱形④对角线相等的四边形,各边中点所构成的四边形中,为菱形的是()A.②④ B.①②③ C.② D.①④3.如图,在中,,将沿方向平移个单位后得到,连接,则的长为()A. B. C. D.4.如图,在四边形ABCD中,∠A=60°,∠B=∠D=90°,AD=8,AB=7,则BC+CD等于()A.6 B.5 C.4 D.35.一根蜡烛长30cm,点燃后每小时燃烧5cm,燃烧时蜡烛剩余的长度h(cm)和燃烧时间t(小时)之间的函数关系用图像可以表示为中的()A. B. C. D.6.如图,在矩形中,平分,交边于点,若,,则矩形的周长为()A.11 B.14 C.22 D.287.如图,平行四边形ABCD的周长是32cm,△ABC的周长是26cm,E、F分别是边AB、BC的中点,则EF的长为()A.8cm B.6cm C.5cm D.4cm8.有一组数据a=-10,b=0,c=11,d=17,e=17,f=31,若去掉c,下列叙述正确的是()A.只对平均数有影响 B.只对众数有影响C.只对中位数有影响 D.对平均数、中位数都有影响9.去年某果园随机从甲、乙、丙、丁四个品种的葡萄树中各采摘了10棵,每棵产量的平均数(单位:千克)及方差(单位:千克)如下表所示:甲乙丙丁242423202.11.921.9今年准备从四个品种中选出一种产量既高又稳定的葡萄树进行种植,应选的品种是(
)A.甲 B.乙 C.丙 D.丁10.若分式有意义,则的取值范围是()A. B. C. D.11.如图,一次函数y1=k1x+2与反比例函数y2=的图象交点A(m,2)和B(﹣4,﹣1)两点,若y1>y2,则x的取值范围是()A.x<﹣4或0<x<2 B.x>2或﹣4<x<0C.﹣4<x<2 D.x<﹣4或x>212.如图,O是▱ABCD对角线的交点,,,,则的周长是A.17 B.13 C.12 D.10二、填空题(每题4分,共24分)13.如图,直线y1=k1x+a与y2=k2x+b的交点坐标为(1,2),则关于x的方程k1x+a=k2x+b的解是_____.14.如图是两个一次函数y1=k1x+b1与y2=k2x+b2的图象,已知两个图象交于点A(3,2),当k1x+b1>k2x+b2时,x的取值范围是_____.15.如图,已知函数y=kx+2与函数y=mx-4的图象交于点A,根据图象可知不等式kx+2<mx-4的解集是__________.16.如图为某班35名学生投篮成绩的条形图,其中上面部分数据破损导致数据不完全,已知此班学生投篮成绩的中位数是5,下列选项正确的是_______.①3球以下(含3球)的人数;②4球以下(含4球)的人数;③5球以下(含5球)的人数;④6球以下(含6球)的人数.17.在函数y=中,自变量x的取值范围是18.把容量是64的样本分成8组,从第1组到第4组的频数分别是5,7,11,13,第5组到第7组的频率都是0.125,那么第8组的频率是______.三、解答题(共78分)19.(8分)如图,甲、乙两船从港口A同时出发,甲船以30海里/时的速度向北偏东35°的方向航行,乙船以40海里/时的速度向另一方向航行,2小时后,甲船到达C岛,乙船到达B岛,若C,B两岛相距100海里,则乙船航行的方向是南偏东多少度?20.(8分)国家规定,“中小学生每天在校体育锻炼时间不小于1小时”,某地区就“每天在校体育锻炼时间”的问题随机调查了若干名中学生,根据调查结果制作如下统计图(不完整).其中分组情况:A组:时间小于0.5小时;B组:时间大于等于0.5小时且小于1小时;C组:时间大于等于1小时且小于1.5小时;D组:时间大于等于1.5小时.根据以上信息,回答下列问题:(1)A组的人数是人,并补全条形统计图;(2)本次调查数据的中位数落在组;(3)根据统计数据估计该地区25000名中学生中,达到国家规定的每天在校体育锻炼时间的人数约有多少人.21.(8分)如图,已知点A、C在双曲线上,点B、D在双曲线上,AD//BC//y轴.(I)当m=6,n=-3,AD=3时,求此时点A的坐标;(II)若点A、C关于原点O对称,试判断四边形ABCD的形状,并说明理由;(III)若AD=3,BC=4,梯形ABCD的面积为,求mn的最小值.22.(10分)先化简,再求值:﹣2(x﹣1),其中x=.23.(10分)“机动车行驶到斑马线要礼让行人”等交通法规实施后,某校数学课外实践小组就对这些交通法规的了解情况在全校随机调査了部分学生,调查结果分为五种:A非常了解,B比较了解,C基本了解,D不太了解,E完全不知.实践小组把此次调查结果整理并绘制成下面不完整的条形统计图和扇形统计图请根据以上信息,解答下列问题:(1)本次共调查了名学生,扇形统计图中D所对应扇形的圆心角为度;(2)把这幅条形统计图补充完整(画图后请标注相应的数据);(3)该校共有800名学生,根据以上信息,请你估计全校学生中对这些交通法规“非常了解”的有名.24.(10分)在平面直角坐标系xOy中,对于与坐标轴不平行的直线l和点P,给出如下定义:过点P作x轴,y轴的垂线,分别交直线l于点M,N,若PM+PN≤4,则称P为直线l的近距点,特别地,直线上l所有的点都是直线l的近距点.已知点A(-,0),B(0,2),C(-2,2).(1)当直线l的表达式为y=x时,①在点A,B,C中,直线l的近距点是;②若以OA为边的矩形OAEF上所有的点都是直线l的近距点,求点E的纵坐标n的取值范围;(2)当直线l的表达式为y=kx时,若点C是直线l的近距点,直接写出k的取值范围.25.(12分)如图所示的图象反映的过程是:小强星期天从家跑步去体育场,在那里锻炼了一会儿后又走到文具店去买笔,然后步行回家,其中x表示时间,y表示小强离家的距离,根据图象回答下列问题.(1)体育场离小强家有多远?小强从家到体育场用了多长时间?(2)体育场距文具店多远?(3)小强在文具店逗留了多长时间?(4)小强从文具店回家的平均速度是多少?26.如图1,以直线MN上的线段BC为边作正方形ABCD,CH平分∠DCN,点E为射线BN上一点,连接AE,过点E作AE的垂线交射线CH于点F,探索AE与EF的数量关系。(1)阅读下面的解答过程。并按此思路完成余下的证明过程当点E在线段BC上,且点E为BC中点时,AB=EF理由如下:取AB中点P,達接PE在正方形ABCD中,∠B=∠BCD=90°,AB=BC∴△BPE等腰三角形,AP=BC∴∠BPB=45°∴∠APBE=135°又因为CH平分∠DCN∴∠DCF=45°∴∠ECF=135°∴∠APE=∠ECF余下正明过程是:(2)当点E为线段AB上任意一点时,如图2,结论“AE=EF”是否成立,如果成立,请给出证明过程;(3)当点E在BC的延长线时,如图3,结论“AE=EF”是否仍然成立,如果成立,请在图3中画出必要的辅助线(不必说明理由)。
参考答案一、选择题(每题4分,共48分)1、A【解析】
先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.【详解】∵二次根式在实数范围内有意义,∴x−50,解得x5.故选:A.【点睛】考查二次根式有意义的条件,掌握被开方数大于等于0是解题的关键.2、A【解析】
根据菱形的判定,有一组邻边相等的平行四边形是菱形,只要保证四边形的对角线相等即可.【详解】∵连接任意四边形的四边中点都是平行四边形,∴对角线相等的四边形有:②④,故选:A.【点睛】本题主要利用菱形的四条边都相等及连接任意四边形的四边中点都是平行四边形来解决.3、B【解析】
根据平移的性质可得DE=AB=4,BC-BE=6-2=4,然后根据等边三角形的定义列式计算即可得解.【详解】解:∵△ABC沿射线BC方向平移2个单位后得到△DEF,
∴DE=AB=4,BC-BE=6-2=4,
∵∠B=∠DEC=60°,
∴△DEC是等边三角形,
∴DC=4,
故选:B.【点睛】本题考查了平移的性质,熟记性质得到相等的线段是解题的关键.4、B【解析】
延长DC至E,构建直角△ADE,解直角△ADE求得DE,BE,根据BE解直角△CBE可得BC,CE,进而求解.【详解】如图,延长AB、DC相交于E,
在Rt△ADE中,可求得AE2-DE2=AD2,且AE=2AD,
计算得AE=16,DE=8,
于是BE=AE-AB=9,
在Rt△BEC中,可求得BC2+BE2=CE2,且CE=2BC,
∴BC=3,CE=6,
于是CD=DE-CE=2,
BC+CD=5.
故选B.【点睛】本题考查了勾股定理的运用,考查了30°角所对的直角边是斜边的一半的性质,本题中构建直角△ADE求BE,是解题的关键.5、B【解析】
根据蜡烛剩余的长度=总长度-燃烧的长度就可以得出函数的解析式,由题意求出自变量的取值范围就可以得出函数图象.【详解】解:由题意,得
y=30-5t,
∵y≥0,t≥0,
∴30-5t≥0,
∴t≤6,
∴0≤t≤6,
∴y=30-5t是降函数且图象是一条线段.
故选B.【点睛】本题考查一次函数的解析式的运用,一次函数的与实际问题的关系的运用,一次函数的图象的运用,自变量的取值范围的运用,解答时求出函数解析式及自变量的范围是关键.6、C【解析】
根据勾股定理求出DC=4,证明BE=AB=4,即可求出矩形的周长;【详解】∵四边形ABCD是矩形,∴∠C=90°,AB=CD;AD∥BC;∵ED=5,EC=3,∴DC=DE−CE=25−9,∴DC=4,AB=4;∵AD∥BC,∴∠AEB=∠DAE;∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴BE=AB=4,矩形的周长=2(4+3+4)=22.故选C【点睛】此题考查矩形的性质,解题关键在于求出DC=47、C【解析】
根据平行四边形的性质得出AB+BC=16cm,进而得出AC的长度,利用三角形中位线解答即可.【详解】解:∵平行四边形ABCD的周长是32cm,∴AB+BC=16cm,∵△ABC的周长是26cm,∴AC=26-16=10cm,∵E、F分别是边AB、BC的中点,∴EF=0.5AC=5cm,故选:C.【点睛】此题考查平行四边形的性质,关键是根据平行四边形的性质得出AB+BC=16cm,进而得出AC的长度.8、C【解析】
分别计算出去掉c前后的平均数,中位数和众数,进行比较即可得出答案.【详解】去掉c之前:平均数为:,中位数是,众数是17;去掉c之后:平均数为:,中位数是,众数是17;通过对比发现,去掉c,只对中位数有影响,故选:C.【点睛】本题主要考查平均数,中位数和众数,掌握平均数,中位数和众数的求法是解题的关键.9、B【解析】
先比较平均数得到甲组和乙组产量较好,然后比较方差得到乙组的状态稳定.【详解】因为甲组、乙组的平均数丙组比丁组大,而乙组的方差比甲组的小,所以乙组的产量比较稳定,所以乙组的产量既高又稳定,故选B.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数的意义.10、A【解析】
根据分式有意义的条件:分母不等于0,即可求解.【详解】解:根据题意得:x-1≠0,
解得:x≠1.
故选:A.【点睛】此题考查分式有意义的条件,正确理解条件是解题的关键.11、B【解析】
先把B点坐标代入y1=求出k1的值得到反比例函数解析式,再利用反比例函数解析式确定A点坐标,然后写出一次函数图象在反比例函数图象上方所对应的自变量的范围.【详解】解:把B(﹣4,﹣1)代入y1=得k1=﹣4×(﹣1)=4,所以反比例函数解析式为y1=,把A(m,1)代入y1=得1m=4,解得m=1,所以A(1,1),当﹣4<x<0或x>1时,y1>y1.故选:B.【点睛】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.12、C【解析】
利用平行四边形的性质和勾股定理易求BO的长即可.【详解】∵▱ABCD的对角线AC与BD相交于点O,∴AO=CO=3∵AB⊥AC,AB=4,AC=6,∴BO==1.∴△AOB的周长=AB+AO+BO=4+3+1=12,故选C.【点睛】本题考查了平行四边形的性质以及勾股定理的运用,是中考常见题型,比较简单.二、填空题(每题4分,共24分)13、x=1【解析】
由交点坐标就是该方程的解可得答案.【详解】关于x的方程k2x+b=k1x+a的解,即直线y1=k1x+a与直线y2=k2x+b的交点横坐标,所以方程的解为x=1.故答案为:1.【点睛】本题考查的知识点是一次函数与一元一次方程,一次函数的图象和性质,解题的关键是熟练的掌握一次函数与一元一次方程,一次函数的图象和性质.14、x>3【解析】
观察图象,找出函数y1=k1x+b1的图象在y2=k2x+b2的图象上方时对应的自变量的取值即可得答案.【详解】∵一次函数y1=k1x+b1与y2=k2x+b2的两个图象交于点A(3,2),∴当k1x+b1>k2x+b2时,x的取值范围是x>3,故答案为:x>3.【点睛】本题考查了一次函数与不等式,运用数形结合思想是解本题的关键.15、x<-2【解析】
观察函数图象得到当x<-2时,y=kx+2的图象位于y=mx-1的下方,即kx+2<mx-1.【详解】解:∵观察图象知当<>-2时,y=kx+2的图象位于y=mx-1的下方,
根据图象可知不等式kx+2<mx-1的解集是x<-2,
故答案为:x<-2.【点睛】本题考查一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.16、①②④【解析】
根据题意和条形统计图中的数据可以求得各个选项中对应的人数,从而可以解答本题.【详解】因为共有35人,而中位数应该是第18个数,所以第18个数是5,从图中看出第四个柱状图的范围在6以上,所以投4个球的有7人.可得:3球以下(含3球)的人数为10人,4球以下(含4球)的人数10+7=17人,6球以下(含6球)的人数35-1=1.故只有5球以下(含5球)的人数无法确定.故答案为①②④【点睛】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.同时理解中位数的概念.17、.【解析】
求函数自变量的取值范围,就是求函数解析式有意义的条件,根据分式分母不为0的条件,要使在实数范围内有意义,必须.18、0.1【解析】
利用频率与频数的关系得出第1组到第4组的频率,进而得出第8组的频率.【详解】解:∵把容量是64的样本分成8组,从第1组到第4组的频数分别是5,7,11,13,
∴第1组到第4组的频率是:(5+7+11+13)0.5625∵第5组到第7组的频率是0.125,第8组的频率是:1-0.5625-0.125=0.1故答案为:0.1.【点睛】此题主要考查了频数与频率,正确求出第5组到第7组的频数是解题关键.三、解答题(共78分)19、乙船航行的方向为南偏东55°.【解析】试题分析:由题意可知:在△ABC中,AC=60,AB=80,BC=100,由此可由“勾股定理逆定理”证得∠BAC=90°,结合∠EAD=180°和∠EAC=35°即可求得∠DAB的度数,从而得到乙船的航行方向.试题解析:由题意可知,在△ABC中,AC=30×2=60,AB=40×2=80,BC=100,∴AC2=3600,AB2=6400,BC2=10000,∴AC2+AB2=BC2,∴∠CAB=90°,又∵∠EAD=180°,∠EAC=35°,∴∠DAB=90°-∠CAE=90°-35°=55°,∴乙船航行的方向为南偏东55°.点睛:本题的解题要点是:在△ABC中,由已知条件先求得AC和AB的长,再结合AC=100,即可用“勾股定理的逆定理”证得∠BAC=90°,这样即可求出∠DAB的度数,从而使问题得到解决.20、(1)50,补图见解析;(2)C;(3)14000人.【解析】试题分析:(1)根据题意和统计图可以得到A组的人数;
(2)根据(1)中补全的统计图可以得到这组数据的中位数落在哪一组;
(3)根据统计图中的数据可以估计该地区达到国家规定的每天在校体育锻炼时间的人数.试题解析:(1)由统计图可得,A组人数为:60÷24%-60-120-20=50,因此,本题正确答案是:50,补全的条形统计图如图所示.(2)由补全的条形统计图可得,中位数落在C组,因此,本题正确答案是:C.(3)根据题意可得,该地区25000名中学生中,达到国家规定的每天在校体育锻炼时间的人数约有:25000×(48%+8%)=14000(人),因此,本题正确答案是:14000.21、(I)点的坐标为;(II)四边形是平行四边形,理由见解析;(III)的最小值是.【解析】
(I)由,,可得,.分别表示出点A、D的坐标,根据,即可求出点A的坐标.(II)根据点A、C关于原点O对称,设点A的坐标为:,即可分别表示出B、C、D的坐标,然后可得出与互相平分可证明出四边形是平行四边形.(III)设与的距离为,由,,梯形的面积为,可求出h=7,根据,,可得,进而得出答案.【详解】(I)∵,,∴,,设点的坐标为,则点的坐标为,由得:,解得:,∴此时点的坐标为.(II)四边形是平行四边形,理由如下:设点的坐标为,∵点、关于原点对称,∴点的坐标为,∵∥∥轴,且点、在双曲线上,,∴点,点,∴点B与点D关于原点O对称,即,且、、三点共线.又点、C关于原点O对称,即,且、、三点共线.∴与互相平分.∴四边形是平行四边形.(III)设与的距离为,,,梯形的面积为,∴,即,解得:,设点的坐标为,则点,,,由,,可得:,则,,∴,解得:,∴,∵.∴.∴,即.又,,∴当取到等号.即,时,的最小值是.【点睛】本题主要考查了反比例函数的性质和图像,本题涉及知识点比较多,打好基础是解决本题的关键.22、原式=2-x,.【解析】
原式第一项约分,第二项去括号,合并得到最简结果,将x的值代入计算即可求出值.【详解】原式=﹣2x+2=x﹣2x+2=2﹣x,当x==2﹣时,原式=2﹣2+=.【点睛】本题考查了分式的化简求值,分母有理化,熟练掌握分式混合运算的运算法则以及分母有理化的方法是解题的关键.23、(1)300;54;(2)条形统计图补充见解析;(3)1.【解析】
(1)从条形统计图中,可得到“B”的人数108人,从扇形统计图中可得“B”组占36%,用人数除以所占的百分比即可求出调查人数,求出“D”组所占整体的百分比,用360°去乘这个百分比即可得出D所对应扇形的圆心角度数;(2)用总人数乘以“C”组所占百分比求出“C”组的人数,再补全统计图;(3)求出“A”组所占的百分比,用样本估计总体进行计算即可.【详解】(1)共调查学生人数为:=300,扇形D比例:=15%,圆心角:=54°故答案为:300;54;(2)25%×300=75,条形统计图补充如下:(3)×800=1.故答案为:1.【点睛】本题考查条形统计图、扇形统计图的特点及制作方法,明确统计图中各个数据之间的关系是解决问题的关键,善于从两个统计图中获取相关数据是解决问题的前提.24、(1)①A,B;②n的取值范围是,且;(2).【解析】【分析】(1)①根据PM+PN≤4,进行判断;②当PM+PN=4时,可知点P在直线l1:,直线l2:上.所以直线l的近距点为在这两条平行线上和在这两条平行线间的所有点.分两种情况分析:EF在OA上方,当点E在直线l1上时,n的值最大;EF在OA下方,当点F在直线l2上时,n的值最小,当时,EF与AO重合,矩形不存在,所以可以分析出n的取值范围;(2)根据定义,结合图形可推出:.【详解】解:(1)①A,B;②当PM+PN=4时,可知点P在直线l1:,直线l2:上.所以直线l的近距点为在这两条平行线上和在这两条平行线间的所有点.如图1,EF在OA上方,当点E在直线l1上时,n的值最大,为.如图2,EF在OA下方,当点F在直线l2上时,n的值最小,为.当时,EF与AO重合,矩形不存在.综上所述,n的取值范围是,且.(2).【点睛】本题考核知识点:一次函数和矩形综合,新定义知识.解题关键点:理解新定义.25、(1)体育场离陈欢家2.5千米,小刚在体育场锻炼了15分钟;(2)体育场离文具店1千米;(3)
小刚在文具店停留20分;(4)小强从文具店回家的平均速度是千米/分【解析】
(1)根据
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度公路建设廉政承诺及交通安全管理合同3篇
- 二零二五年度带物业费结算与社区配套的二手房屋个人买卖合同3篇
- 二零二五年度智能家居生活体验个人住房租赁服务协议3篇
- 远程监控技术课程设计
- 应用文启事课程设计
- 二零二五年度市场营销战略合同3篇
- 二零二五年度公路运输物流信息化平台建设合同3篇
- 英国文物修复课程设计
- 2025年度生猪养殖与电子商务平台合作合同3篇
- 二零二五年度新型城镇化项目配套基础设施建设国有土地租赁合同3篇
- 农业机械培训课件
- 河南省郑州市2023-2024学年高二上学期期末考试英语试题 附答案
- 2023年年北京市各区初三语文一模分类试题汇编 - 作文
- 2024年度心理辅导合作协议模板版
- GB/T 22723-2024天然气能量的测定
- 能源岗位招聘笔试题与参考答案(某大型国企)2024年
- 航空与航天学习通超星期末考试答案章节答案2024年
- 麻醉苏醒期躁动患者护理
- 英语雅思8000词汇表
- 2024年《13464电脑动画》自考复习题库(含答案)
- 2025年辽宁中考语文复习专项训练:文言文阅读(含解析)
评论
0/150
提交评论