2024年浙江省宁波市鄞州区实验中学八年级下册数学期末监测试题含解析_第1页
2024年浙江省宁波市鄞州区实验中学八年级下册数学期末监测试题含解析_第2页
2024年浙江省宁波市鄞州区实验中学八年级下册数学期末监测试题含解析_第3页
2024年浙江省宁波市鄞州区实验中学八年级下册数学期末监测试题含解析_第4页
2024年浙江省宁波市鄞州区实验中学八年级下册数学期末监测试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年浙江省宁波市鄞州区实验中学八年级下册数学期末监测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.下列调查中,适宜采用抽样调查方式的是()A.调查八年级某班学生的视力情况B.调查乘坐飞机的旅客是否携带违禁物品C.调查某品牌LED灯的使用寿命D.学校在给学生订制校服前尺寸大小的调查2.在一次“爱心互助”捐款活动中,某班第一小组7名同学捐款的金额(单位:元)分别为6,3,6,5,5,6,9.这组数据的中位数和众数分别是()A.5,5 B.6,6 C.6,5 D.5,63.不等式组中的两个不等式的解集在数轴上表示为()A. B.C. D.4.若的函数值随着的增大而增大,则的值可能是()A.0 B.1 C.-3 D.-25.如图,已知A(2,1),现将A点绕原点O逆时针旋转90°得到A1,则A1的坐标是()A.(﹣1,2) B.(2,﹣1) C.(1,﹣2) D.(﹣2,1)6.下列命题的逆命题成立的是()A.对顶角相等B.菱形的两条对角线互相垂直平分C.全等三角形的对应角相等D.如果两个实数相等,那么它们的绝对值相等7.如图,在△ABC中,AB=AC,∠BAC=58°,∠BAC的平分线与AB的中垂线交于点O,连接OC,则∠AOC的度数为()A.151° B.122° C.118° D.120°8.如图,将△ABC绕点A按顺时针方向旋转120°得到△ADE,点B的对应点是点E,点C的对应点是点D,若∠BAC=35°,则∠CAE的度数为()A.90° B.75° C.65° D.85°9.在平行四边形中,下列结论一定成立的是()A. B. C. D.10.如图,四边形是矩形,,,点在第二象限,则点的坐标是A. B. C. D.11.不等式组的解集是()A.x>-2 B.x<1C.-1<x<2 D.-2<x<112.的三边长分别为,下列条件:①;②;③;④其中能判断是直角三角形的个数有()A.个 B.个 C.个 D.个二、填空题(每题4分,共24分)13.式子在实数范围内有意义,则x的取值范围是_____.14.在直角坐标系中,直线l:y=x﹣与x轴交于点B1,以OB1为边长作等边△A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边△A2A1B2,过点A2作A1B2平行于x轴,交直线l于点B3,以A2B3为边长作等边△A3A2B3,…,则等边△A2017A2018B2018的边长是_____.15.数据15、19、15、18、21的中位数为_____.16.如图,将边长为8的正方形ABCD折叠,使点D落在BC边的中点E处,点A落在F处,折痕为MN,则线段CN的长为____.17.抛物线,当时,的取值范围是__________.18.______.三、解答题(共78分)19.(8分)某商店计划购进A、B两种型号的电动自行车共30辆,其中A型电动自行车不少于20辆,A、B两种型号电动自行车的进货单价分别为2500元、3000元,售价分别为2800元、3500元,设该商店计划购进A型电动自行车m辆,两种型号的电动自行车全部销售后可获利润y元.(1)求出y与m之间的函数关系式;(2)该商店如何进货才能获得最大利润?此时最大利润是多少元?20.(8分)用适当方法解下列方程(1)3(x﹣2)=5x(x﹣2)(2)x2+x﹣1=021.(8分)如图,E与F分别在正方形ABCD边BC与CD上,∠EAF=45°.(1)以A为旋转中心,将△ABE按顺时针方向旋转90°,画出旋转后得到的图形.(2)已知BE=2cm,DF=3cm,求EF的长.22.(10分)如图,将▱ABCD的边AB延长到点E,使,DE交边BC于点F.求证:;若,求证:四边形BECD是矩形.23.(10分)如图,在△ABC中,∠ABC=90°,BD为AC边上的中线.(1)按如下要求尺规作图,保留作图痕迹,标注相应的字母:过点C作直线CE,使CE⊥BC于点C,交BD的延长线于点E,连接AE;(2)求证:四边形ABCE是矩形.24.(10分)计算:(1)

;(2)25.(12分)在矩形ABCD中,AB=4,AD=3,矩形内部有一动点P满足S矩形ABCD=3S△PAB,则PA+PB的最小值为_____.26.为了调查甲,乙两台包装机分装标准质量为奶粉的情况,质检员进行了抽样调查,过程如下.请补全表一、表二中的空,并回答提出的问题.收集数据:从甲、乙包装机分装的奶粉中各自随机抽取10袋,测得实际质量(单位:)如下:甲:394,400,408,406,410,409,400,400,393,395乙:402,404,396,403,402,405,397,399,402,398整理数据:表一频数种类质量()甲乙____________003310________________________130分析数据:表二种类甲乙平均数401.5400.8中位数____________402众数400____________方差36.858.56得出结论:包装机分装情况比较好的是______(填甲或乙),说明你的理由.

参考答案一、选择题(每题4分,共48分)1、C【解析】

由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】A、调查八年级某班学生的视力情况适合全面调查,故A选项错误;B、调查乘坐飞机的旅客是否携带违禁物品,适合全面调查,故B选项错误;C、调查某品牌LED灯的使用寿命适合抽样调查,故C选项正确;D、学校在给学生订制校服前尺寸大小的调查,适于全面调查,故D选项错误.故选C.【点睛】对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.2、B【解析】

根据中位数的概念:是按顺序排列的一组数据中居于中间位置的数,将这一组数据进行排列,即可得出中位数;根据众数的定义:是一组数据中出现次数最多的数值,即可判定众数.【详解】解:将这一组数按照从高到低的顺序排列,得3,5,5,6,6,6,9,则其中位数为6;这组数中出现次数最多的数是6,即为众数,故答案为B.【点睛】此题主要考查对中位数和众数的理解,熟练掌握其内涵,即可解题.3、C【解析】

分别求出各不等式的解集,再求出其公共解集并在数轴上表示出来即可.【详解】不等式组,解得:,解得:,∴不等式组的解集为:,故选:C.【点睛】本题考查了不等式组的解法和在数轴上表示不等式组的解集.需要注意的是:如果是表示大于或小于号的点要用空心圆圈,如果是表示大于等于或小于等于号的点要用实心圆点.4、B【解析】

先根据一次函数的增减性判断出k的符号,进而可得出结论.【详解】解:的函数值y随着x的增大而增大,

各选项中只有B选项的1符合题意.

故选:B.【点睛】本题考查的是一次函数的性质,熟知一次函数的增减性是解答此题的关键.5、A【解析】

根据点(x,y)绕原点逆时针旋转90°得到的坐标为(-y,x)解答即可.【详解】已知A(2,1),现将A点绕原点O逆时针旋转90°得到A1,所以A1的坐标为(﹣1,2).故选A.【点睛】本题考查的是旋转的性质,熟练掌握坐标的旋转是解题的关键.6、B【解析】

首先写出各个命题的逆命题,再进一步判断真假.【详解】A、对顶角相等的逆命题是相等的角是对顶角,是假命题;B、菱形的两条对角线互相垂直平分的逆命题是两条对角线互相垂直平分的四边形的菱形,是真命题;C、全等三角形的对应角相等的逆命题是对应角相等的三角形全等,是假命题;D、如果两个实数相等,那么它们的绝对值相等的逆命题是如果两个实数的绝对值相等,那么相等,是假命题;故选:B.【点睛】本题考查逆命题的真假性,是易错题.易错易混点:本题要求的是逆命题的真假性,学生易出现只判断原命题的真假,也就是审题不认真.7、B【解析】

根据等腰三角形的性质得出AO垂直平分BC,根据线段垂直平分线性质得出AO=BO、OB=OC,利用等边对等角及角平分线性质,内角和定理求出所求即可.【详解】连接BO,延长AO交BC于E,∵AB=AC,AO平分∠BAC,∴AO⊥BC,AO平分BC,∴OB=OC,∵O在AB的垂直平分线上,∴AO=BO,∴AO=CO,∴∠OAC=∠OCA=∠OAD=×58°=29°,∴∠AOC=180°-2×29°=122°,故选B.【点睛】此题考查了等腰三角形的性质,以及线段垂直平分线的性质,熟练掌握各自的性质是解本题的关键.8、D【解析】

由题意可得∠BAE是旋转角为120°且∠BAC=35°,可求∠CAE的度数.【详解】∵将△ABC绕点A按顺时针方向旋转120°得到△ADE∴∠BAE=120°且∠BAC=35°∴∠CAE=85°故选D.【点睛】本题考查了旋转的性质,关键是熟练运用旋转的性质解决问题.9、D【解析】

根据平行四边形的性质即可解决问题【详解】解:∵四边形ABCD是平行四边形,∴,AD∥BC,∴故选:D【点睛】本题考查学生对平行四边形概念的掌握情况,平行四边形对边平行且相等,对角相等,邻角互补,对角线互相平分.解题的关键是熟练掌握平行四边形的性质,属于中考常考题型.10、D【解析】

过C作CE⊥y轴于E,过A作AF⊥y轴于F,得到∠CEO=∠AFB=90°,根据矩形的性质得到AB=OC,AB∥OC,根据全等三角形的性质得到CE=AF,OE=BF,BE=OF,于是得到结论.【详解】解:过作轴于,过作轴于,,四边形是矩形,,,,,同理,,,,,,,,,,点的坐标是;故选:.【点睛】本题考查了矩形的性质,全等三角形的判定和性质,正确的作出辅助线是解题的关键.11、D【解析】分析:首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.详解:,解①得:x>﹣2,解②得:x<1,则不等式组的解集是:﹣2<x<1.故选D.点睛:本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分.找解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.12、C【解析】

判定直角三角形的方法有两个:一是有一个角是的三角形是直角三角形;二是根据勾股逆定理判断,即三角形的三边满足,其中边c为斜边.【详解】解:由三角形内角和定理可知,①中,,,,能判断是直角三角形,①正确,③中,,,不是直角三角形,③错误;②中化简得即,边b是斜边,由勾股逆定理是直角三角形,②正确;④中经计算满足,其中边c为斜边,由勾股逆定理是直角三角形,④正确,所以能判断是直角三角形的个数有3个.故答案为:C【点睛】本题考查了直角三角形的判定,主要从边和角两方面去考虑,即有一个角是直角或三边满足,灵活运用直角三角形边角的特殊性质取判定直角三角形是解题的关键.二、填空题(每题4分,共24分)13、x≤1【解析】

二次根式的被开方数是非负数.【详解】解:依题意,得1﹣x≥0,解得,x≤1.故答案是:x≤1.【点睛】考查了二次根式的意义和性质.概念:式子叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.14、【解析】

从特殊得到一般探究规律后,利用规律解决问题即可;【详解】∵直线l:y=x﹣与x轴交于点B1,∴B1(1,0),OB1=1,△OA1B1的边长为1,∵直线y=x﹣与x轴的夹角为30°,∠A1B1O=60°,∴∠A1B1B2=90°,∵∠A1B2B1=30°,∴A1B2=2A1B1=2,△A2B3A3的边长是2,同法可得:A2B3=4,△A2B3A3的边长是22,由此可得,△AnBn+1An+1的边长是2n,∴△A2017B2018A2018的边长是1.故答案为1.【点睛】本题主要考查了一次函数图象上点的坐标特征以及等边三角形的性质的运用,解决问题的关键是依据等边三角形的性质找出规律,求得△AnBn+1An+1的边长是2n.15、1【解析】

将这五个数排序后,可知第3位的数是1,因此中位数是1.【详解】将这组数据排序得:15,15,1,19,21,处于第三位是1,因此中位数是1,故答案为:1.【点睛】考查中位数的意义和求法,将一组数据排序后处在中间位置的一个数或两个数的平均数是中位数.16、3【解析】

根据折叠的性质,只要求出DN就可以求出NE,在直角△CEN中,若设CN=x,则DN=NE=8-x,CE=4,根据勾股定理就可以列出方程,从而解出CN的长.【详解】设CN=x,则DN=8-x,由折叠的性质知EN=DN=8-x,而EC=12BC=4,在Rt△ECN中,由勾股定理可知EN2整理得16x=48,所以x=1.故答案为:1.【点睛】本题考查翻折变换、正方形的性质、勾股定理等知识,解题的关键是设未知数利用勾股定理列出方程解决问题,属于中考常考题型.17、【解析】

首先根据二次函数的的二次项系数大于零,可得抛物线开口向下,再计算抛物线的对称轴,判断范围内函数的增减性,进而计算y的范围.【详解】解:根据二次函数的解析式可得由a=2>0,可得抛物线的开口向上对称轴为:所以可得在范围内,二次函数在,y随x的增大而减小,在上y随x的增大而增大.所以当取得最小值,最小值为:当取得最大值,最大值为:所以故答案为【点睛】本题主要考查抛物线的性质,关键在于确定抛物线的开口方向,对称轴的位置,进而计算y的范围.18、【解析】

先逐项化简,再进一步计算即可.【详解】原式=-1-3+1=.故答案为:.【点睛】本题考查了实数的混合运算,正确化简各数是解答本题的关键.三、解答题(共78分)19、(1)=﹣200+15000(20≤m<30);(2)购进A型电动自行车20辆,购进B型10辆,最大利润是11000元.【解析】

(1)利润=一辆A型电动自行车的利润×A型电动自行车的数量+一辆B型电动自行车的利润×B型电动自行车的数量,依此列式化简即可;(2)根据一次函数的性质,结合自变量的取值范围即可求解;【详解】解:(1)计划购进A型电动自行车辆,B型电动自行车(30-)辆,=(2800-2500)m+(3500﹣3000)(30﹣m),=﹣200+15000(20≤m<30),(2)∵20≤<30,且随的增大而减小可得,=20时,有最大值,=﹣200×20+15000=11000,购进A型电动自行车20辆,购进B型10辆,最大利润是11000元.【点睛】本题考查了一次函数的应用,解题的关键是求出y与m之间的函数关系式.20、(1)x1=2,x2=;(2)x=.【解析】

(1)用因式分解法解方程;(2)利用求根公式法解方程.【详解】解:(1)方程整理得:3(x﹣2)﹣5x(x﹣2)=0,分解因式得:(x﹣2)(3﹣5x)=0,解得:x1=2,x2=;(2)这里a=1,b=1,c=﹣1,∵△=1+4=5,∴x=.【点睛】考查了解一元二次方程的方法.当把方程通过移项把等式的右边化为0后方程的左边能因式分解时,一般情况下是把左边的式子因式分解,再利用积为0的特点解出方程的根.因式分解法是解一元二次方程的一种简便方法,要会灵活运用.当化简后不能用分解因式的方法即可考虑求根公式法,此法适用于任何一元二次方程.21、(1)见解析;(2)5cm.【解析】【分析】(1)根据旋转角度、旋转方向、旋转点找出各点的对应点,顺次连接即可得出;(2)首先证明△ABE≌△ADM,进而得到∠MAF=45°;证明△EAF≌△MAF,得到EF=FG问题即可解决.【详解】(1)如图所示;(2)由(1)知:△ADM≌△ABE,M、D、F共线,∴AD=AB,AM=AE,∠MAD=∠BAE,MD=BE=2,∵四边形ABCD为正方形,∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠MAD+∠DAF=45°,∴△AMF≌△AEF(SAS),∴EF=MF,∵MF=MD+DF,∴EF=MF=MD+DF=2+3=5cm.【点睛】本题考查了正方形的性质、旋转的性质、全等三角形的判定与性质,熟练掌握和灵活运用相关性质是解题的关键.22、(1)证明见解析;(2)证明见解析.【解析】

根据平行四边形的判定与性质得到四边形BECD为平行四边形,可得结论(1),再由已知条件证出BC=ED,即可得出结论.【详解】证明:四边形ABCD是平行四边形,,.,.,,,在与中,,≌;;四边形ABCD是平行四边形,,,,,,四边形BECD是平行四边形,,,,,,,,四边形BECD是矩形【点睛】本题考查了平行四边形的性质和判定,矩形的判定,三角形的外角性质等知识点的综合运用;熟练掌握平行四边形的判定与性质是解决问题的关键.23、(1)见解析;(2)见解析.【解析】

(1)根据题意作图即可;

(2)先根据BD为AC边上的中线,AD=DC,再证明△ABD≌△CED(AAS)得AB=EC,已知∠ABC=90°即可得四边形ABCE是矩形.【详解】(1)解:如图所示:E点即为所求;(2)证明:∵CE⊥BC,∴∠BCE=90°,∵∠ABC=90°,∴∠BCE+∠ABC=180°,∴AB∥CE,∴∠ABE=∠CEB,∠BAC=∠ECA,∵BD为AC边上的中线,∴AD=DC,在△ABD和△CED中,∴△ABD≌△CED(AAS),∴AB=EC,∴四边形ABCE是平行四边形,∵∠ABC=90°,∴平行四边形ABCE是矩形.【点睛】本题考查了全等三角形的判定与性质与矩形的性质,解题的关键是熟练的掌握全等三角形的判定与性质与矩形的性质.24、(1)10;(2)【解析】

根据二次根式的混合运算法则进行计算,即可解答.【详解】(1)原式=;(2)==;【点睛】此题考查二次根式的混合运算,解题关

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论