版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省潜江市十校联考2024年八年级下册数学期末质量跟踪监视模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列各组数中不能作为直角三角形的三边长的是()A.,, B.,, C.,1,2 D.,,2.下列分式中,无论取何值,分式总有意义的是()A. B. C. D.3.下列长度的三条线段能组成三角形的是()A.1,2,3 B.2,2,4 C.3,4,5 D.3,4,84.如图,在中,对角线,相交于点,点分别是边的中点,交与点,则与的比值是()A. B. C. D.5.下面的图形是天气预报的图标,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.6.如图,在平面直角坐标系中,线段AB的端点坐标为A(-2,4),B(4,2),直线y=kx-2与线段AB有交点,则K的值不可能是()A.-5 B.-2 C.3 D.57.如图,在▱ABCD中,分别以AB,AD为边向外作等边△ABE,△ADF,延长CB交AE于点G,点G在点A,E之间,连接CE,CF,EF,则以下四个结论一定正确的是()①△CDF≌△EBC;②∠CDF=∠EAF;③△ECF是等边三角形;④CG⊥AEA.只有①② B.只有①②③C.只有③④ D.①②③④8.如图,直线经过点,则关于的不等式的解集是()A. B. C. D.9.平南县某小区5月份随机抽取了15户家庭,对其用电情况进行了统计,统计情况如下(单位:度):78,62,95,108,87,103,99,74,87,105,88,76,76,94,79.则用电量在71~80的家庭有()A.4户 B.5户 C.6户 D.7户10.已知正比例函数的函数值随的增大而减小,则一次函数的图象大致是()A. B. C. D.11.如图,下面不能判定四边形ABCD是平行四边形的是()A.B.C.D.12.如图,D,E是△ABC中AB,BC边上的点,且DE∥AC,∠ACB角平分线和它的外角的平分线分别交DE于点G和H.则下列结论错误的是()A.若BG∥CH,则四边形BHCG为矩形B.若BE=CE时,四边形BHCG为矩形C.若HE=CE,则四边形BHCG为平行四边形D.若CH=3,CG=4,则CE=2.5二、填空题(每题4分,共24分)13.如图,将△ABC沿BC方向平移3cm得到△DEF,若△ABC的周长为20cm,则四边形ABFD的周长为________.14.如图,△ABC中,AB+AC=6cm,BC的垂直平分线l与AC相交于点D,则△ABD的周长为___cm.15.若二次根式有意义,则x的取值范围为__________.16.如图,在矩形ABCD中,AB=8,AD=6,E为AB边上一点,将△BEC沿CE翻折,点B落在点F处,当△AEF为直角三角形时,BE=________.17.如图,,请写出图中一对相等的角:______;要使成立,需再添加的一个条件为:______.18.已知一次函数的图象过点(3,5)与点(-4,-9),则这个一次函数的解析式为____________.三、解答题(共78分)19.(8分)解方程:3x-1=x220.(8分)计算:6﹣5﹣+3.21.(8分)如图,Rt△ABC中,∠ACB=90°,D是边BC上一点,点E、F分别是线段AB、AD中点,联结CE、CF、EF.(1)求证:△CEF≌△AEF;(2)联结DE,当BD=2CD时,求证:AD=2DE.22.(10分)在一条笔直的公路上依次有A,C,B三地,甲、乙两人同时出发,甲从A地骑自行车去B地,途经C地休息1分钟,继续按原速骑行至B地,甲到达B地后,立即按原路原速返回A地;乙步行从B地前往A地.甲、乙两人距A地的路程y(米)与时间x(分)之间的函数关系如图所示,请结合图象解答下列问题:(1)请写出甲的骑行速度为米/分,点M的坐标为;(2)求甲返回时距A地的路程y与时间x之间的函数关系式(不需要写出自变量的取值范围);(3)请直接写出两人出发后,在甲返回A地之前,经过多长时间两人距C地的路程相等.23.(10分)如图,某同学想测量旗杆的高度,他在某一时刻测得1米长的竹竿竖直放置时影长为1.5米,在同一时刻测量旗杆的影长时,因旗杆靠近一楼房,影子不全落在地面上,有一部分落在墙上,他测得落在地面上的影长为21米,落在墙上的影高为6米,求旗杆的高度.
24.(10分)正方形ABCD中,E是BC上一点,F是CD延长线上一点,BE=DF,连接AE,AF,EF,G为EF中点,连接AG,DG.(1)如图1:若AB=3,BE=1,求DG;(2)如图2:延长GD至M,使GM=GA,过M作MN∥FD交AF的延长线于N,连接NG,若∠BAE=30°.求证:25.(12分)学期末,某班评选一名优秀学生干部,下表是班长、学习委员和团支部书记的得分情况:假设在评选优秀干部时,思想表现、学习成绩、工作能力这三方面的重要比为3∶3∶4,通过计算说明谁应当选为优秀学生干部。26.如图,在中,是的中点,,的延长线相交于点,(1)求证:;(2)若,且,求的长.
参考答案一、选择题(每题4分,共48分)1、A【解析】
根据勾股定理的逆定理逐项分析即可.【详解】A.∵1.52+22≠32,∴,,不能作为直角三角形的三边长,符合题意;B.∵72+242=252,∴,,能作为直角三角形的三边长,不符合题意;C.∵,∴,1,2能作为直角三角形的三边长,不符合题意;D.∵92+122=152,∴,,能作为直角三角形的三边长,不符合题意;故选A.【点睛】本题考查了勾股定理逆定理,如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形,在一个三角形中,即如果用a,b,c表示三角形的三条边,如果a2+b2=c2,那么这个三角形是直角三角形.2、A【解析】
根据分式有意义的条件是分母不等于零判断.【详解】解:A、∵a2≥0,∴a2+1>0,∴总有意义;B、当a=−时,2a+1=0,无意义;C、当a=±1时,a2−1=0,无意义;D、当a=0时,无意义;无意义;故选:A.【点睛】本题考查的是分式有意义的条件,掌握分式有意义的条件是分母不等于零是解题的关键.3、C【解析】A、1+2=3,不能构成三角形,故A错误;B、2+2=4,不能构成三角形,故B错误;C、3+4>5,能构成三角形,故C正确;D、3+4<8,不能构成三角形,故D错误.故选C.4、C【解析】
由四边形ABCD是平行四边形,可得OA=OC,又由点E,F分别是边AD,AB的中点,可得AH:AO=1:2,即可得AH:AC=1:4,继而求得答案.【详解】解:∵四边形ABCD是平行四边形,
∴OA=OC,
∵点E,F分别是边AD,AB的中点,
∴EF∥BD,
∴△AFH∽△ABO,
∴AH:AO=AF:AB,故选:C【点睛】此题考查了平行四边形的性质、三角形中位线的性质以及相似三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.5、A【解析】试题分析:根据轴对称图形与中心对称图形的概念求解,解答轴对称图形问题的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;解答中心对称图形问题的关键是要寻找对称中心,旋转180度后与原图重合.A、是轴对称图形,也是中心对称图形,故正确;B、不是轴对称图形,也不是中心对称图形,故错误;C、是轴对称图形,不是中心对称图形,故错误;D、不是轴对称图形,也不是中心对称图形,故错误.考点:1.中心对称图形;2.轴对称图形.6、B【解析】
当直线y=kx-2与线段AB的交点为A点时,把A(-2,4)代入y=kx-2,求出k=-3,根据一次函数的有关性质得到当k≤-3时直线y=kx-2与线段AB有交点;当直线y=kx-2与线段AB的交点为B点时,把B(4,2)代入y=kx-2,求出k=1,根据一次函数的有关性质得到当k≥1时直线y=kx-2与线段AB有交点,从而能得到正确选项.【详解】把A(-2,4)代入y=kx-2得,4=-2k-2,解得k=-3,∴当直线y=kx-2与线段AB有交点,且过第二、四象限时,k满足的条件为k≤-3;把B(4,2)代入y=kx-2得,4k-2=2,解得k=1,∴当直线y=kx-2与线段AB有交点,且过第一、三象限时,k满足的条件为k≥1.即k≤-3或k≥1.所以直线y=kx-2与线段AB有交点,则k的值不可能是-2.故选B.【点睛】本题考查了一次函数y=kx+b(k≠0)的性质:当k>0时,图象必过第一、三象限,k越大直线越靠近y轴;当k<0时,图象必过第二、四象限,k越小直线越靠近y轴.7、B【解析】
根据题意,结合图形,对选项一一求证,判定正确选项.【详解】解:在□ABCD中,∠ADC=∠ABC,AD=BC,CD=AB,
∵△ABE、△ADF都是等边三角形,
∴AD=DF,AB=EB,∠ADF=∠ABE=60°,
∴DF=BC,CD=BC,
∴∠CDF=360°-∠ADC-60°=300°-∠ADC,
∠EBC=360°-∠ABC-60°=300°-∠ABC,
∴∠CDF=∠EBC,
在△CDF和△EBC中,DF=BC,∠CDF=∠EBC,CD=EB,
∴△CDF≌△EBC(SAS),故①正确;
在▱ABCD中,∠DAB=180°-∠ADC,
∴∠EAF=∠DAB+∠DAF+∠BAE=180°-∠ADC+60°+60°=300°-∠ADC,
∴∠CDF=∠EAF,故②正确;
同理可证△CDF≌△EAF,
∴EF=CF,
∵△CDF≌△EBC,
∴CE=CF,
∴EC=CF=EF,
∴△ECF是等边三角形,故③正确;
当CG⊥AE时,∵△ABE是等边三角形,
∴∠ABG=30°,
∴∠ABC=180°-30°=150°,
∵∠ABC=150°无法求出,故④错误;
综上所述,正确的结论有①②③.
故选B.【点睛】本题考查了全等三角形的判定、等边三角形的判定和性质、平行线的性质等知识,综合性强,考查学生综合运用数学知识的能力.8、B【解析】
先利用待定系数法求出一次函数解析式,再求出一次函数与x轴的交点坐标,然后找出一次函数图象在x轴上方所对应的自变量的范围即可.【详解】解:把(0,3)代入得b=3,所以一次函数解析式为,当y=0时,即,解得x=1,所以一次函数与x轴的交点坐标为(1,0),由函数图象可得,当x<1时,y>0,所以关于x的不等式的解集是x<1.故选:B.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标的取值范围.9、B【解析】
根据题意找出用电量在71~80的家庭即可.【详解】解:用电量在71~80的家庭有:78,74,76,76,79共5户.
故选:B.【点睛】本题主要考查了数据的收集与整理,理清题意是解题的关键.10、B【解析】
根据自正比例函数的性质得到k<0,然后根据一次函数的性质得到一次函数y=x+k的图象经过第一、三象限,且与y轴的负半轴相交.【详解】解:正比例函的函数值随的增大而减小,,一次函数的一次项系数大于0,常数项小于0,一次函数的图象经过第一、三象限,且与轴的负半轴相交.故选:.【点睛】本题考查正比例函数的性质和一次函数的图象,解题的关键是熟练掌握正比例函数的性质和一次函数的图象.11、C【解析】
根据平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形判断即可.【详解】根据平行四边形的判定,A、B、D均符合是平行四边形的条件,C则不能判定是平行四边形.故选C.【点睛】此题主要考查了学生对平行四边形的判定的掌握情况.对于判定定理:“一组对边平行且相等的四边形是平行四边形.”应用时要注意必须是“一组”,而“一组对边平行且另一组对边相等”的四边形不一定是平行四边形.12、C【解析】
由∠ACB角平分线和它的外角的平分线分别交DE于点G和H可得∠HCG=90°,∠ECG=∠ACG即可得HE=EC=EG,再根据A,B,C,D的条件,进行判断.【详解】解:∵∠ACB角平分线和它的外角的平分线分别交DE于点G和H,∴∠HCG=90°,∠ECG=∠ACG;∵DE∥AC.∴∠ACG=∠HGC=∠ECG.∴EC=EG;同理:HE=EC,∴HE=EC=EG=HG;若CH∥BG,∴∠HCG=∠BGC=90°,∴∠EGB=∠EBG,∴BE=EG,∴BE=EG=HE=EC,∴CHBG是平行四边形,且∠HCG=90°,∴CHBG是矩形;故A正确;若BE=CE,∴BE=CE=HE=EG,∴CHBG是平行四边形,且∠HCG=90°,∴CHBG是矩形,故B正确;若HE=EC,则不可以证明四边形BHCG为平行四边形,故C错误;若CH=3,CG=4,根据勾股定理可得HG=5,∴CE=2.5,故D正确.故选C.【点睛】本题考查了矩形的判定,平行四边形的性质和判定,关键是灵活这些判定解决问题.二、填空题(每题4分,共24分)13、26cm【解析】
先根据平移的性质得DF=AC,AD=CF=3cm,再由△ABC的周长为20cm得到AB+BC+AC=20cm,然后利用等线段代换可计算出AB+BC+CF+DF+AD=26(cm),于是得到四边形ABFD的周长为26cm.【详解】∵△ABC沿BC方向平移3cm得到△DEF,∴DF=AC,AD=CF=3cm,∵△ABC的周长为20cm,即AB+BC+AC=20cm,∴AB+BC+CF+DF+AD=AB+BC+AC+AD+CF=20+3+3=26(cm),即四边形ABFD的周长为26cm.故答案是:26cm.【点睛】考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.14、6【解析】
∵l垂直平分BC,∴DB=DC.∴△ABD的周长=AB+AD+BD=AB+AD+DC=AB+AC=6cm15、x≤1【解析】
解:∵二次根式有意义,∴1-x≥0,∴x≤1.故答案为:x≤1.16、3或6【解析】
对直角△AEF中那个角是直角分三种情况讨论,再由折叠的性质和勾股定理可BE的长.【详解】解:如图,若∠AEF=90°∵∠B=∠BCD=90°=∠AEF∴四边形BCFE是矩形∵将ABEC沿着CE翻折∴CB=CF∵四边形BCFE是正方形∴BE=BC-AD=6,如图,若∠AFE=90°∵将△BEC沿着CE翻折∴CB=CF=6,∠B=∠EFC=90°,BE=EF∵∠AFE+∠EFC=180°∴点A,点F,点C三点共线∴AC=∴AF=AC-CF=4∵A∴(8-BE)∴BE=3,若∠EAF=90°,∵CD=8>CF=6∴点F不可能落在直线AD上∴.不存在∠EAF=90综上所述:BE=3或6故答案为:3或6【点睛】本题主要考查的是翻折的性质,矩形的性质,正方形的判定和性质,勾股定理,依据题意画出符合题意的图形是解题的关键.17、(答案不唯一)∠2=∠3(答案不唯一)【解析】
根据平行线的性质进行解答即可得答案.【详解】解:如图,AB//CD,请写出图中一对相等的角:答案不唯一:∠2=∠A,或∠3=∠B;要使∠A=∠B成立,需再添加的一个条件为:∠2=∠B或∠3=∠A或∠2=∠3,或CD是∠ACE的平分线.故答案为:∠2=∠A(答案不唯一):∠2=∠3(答案不唯一).【点睛】本题考查了平行线的性质,正确运用数形结合思想进行分析是解题的关键.18、【解析】
设一次函数的解析式为:,利用待定系数法把已知点的坐标代入解析式,解方程组即可得答案.【详解】解:设一次函数的解析式为:,解得:所以这个一次函数的解析式为:故答案为:【点睛】本题考查的是利用待定系数法求解一次函数的解析式,掌握待定系数法是解题的关键.三、解答题(共78分)19、x1=,x2=.【解析】
方程整理后,利用公式法求出解即可.【详解】解:方程整理得:x2-3x+1=0,这里a=1,b=-3,c=1,∵△=9-4=5,∴x=,解得:x1=,x2=.【点睛】此题考查了解一元二次方程-公式法,以及配方法,熟练掌握各种解法是解本题的关键.20、2【解析】
把同类二次根式分别合并即可.【详解】6﹣5﹣+3=(6﹣5)+(﹣1+3)=+2.【点睛】考查二次根式的加减法,二次根式加减法一般过程为:先把各个二次根式化成最简二次根式,再把同类二次根式分别合并.21、(1)见解析;(2)见解析.【解析】
(1)在直角三角形ABC中,E为斜边AB的中点,利用斜边上的中线等于斜边的一半得到CE=AE,在直角三角形ACD中,F为斜边AD的中点,利用斜边上的中线等于斜边的一半得到AF=CF,再由EF=EF,利用SSS即可得证;
(2)由EF为三角形ABD的中点,利用中位线定理得到EF与BD平行,EF等于BD的一半,再由BD=2DC,等量代换得到EF=CD,再由EF与CD平行,得到四边形CEFD为平行四边形,可得出DE=CF,再由CF=AF,等量代换得到DE=AF.【详解】证明:(1)∵∠ACB=90°,且E线段AB中点,∴CE=AB=AE,∵∠ACD=90°,F为线段AD中点,∴AF=CF=AD,在△CEF和△AEF中,,∴△CEF≌△AEF(SSS);(2)连接DE,∵点E、F分别是线段AB、AD中点,∴EF=BD,EF∥BC,∵BD=2CD,∴EF=CD.又∵EF∥BC,∴四边形CFEDD是平行四边形,∴DE=CF,∵CF=AF=FD,∴AD=2DE.【点睛】此题考查了全等三角形的判定与性质,中位线定理,直角三角形斜边上的中线等于斜边的一半,以及平行四边形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.22、(1)240,(6,1200);(2)y=﹣240x+2640;(3)经过4分钟或6分钟或8分钟时两人距C地的路程相等.【解析】
(1)根据函数图象得出AB两地的距离,由行程问题的数量关系由路程÷时间=速度就可以求出结论;(2)先由行程问题的数量关系求出M、N的坐标,设y与x之间的函数关系式为y=kx+b,由待定系数法就可以求出结论;(3)设甲返回A地之前,经过x分两人距C地的路程相等,可得乙的速度:1200÷20=60(米/分),分别分①当0<x≤3时②当3<x<﹣1时③当<x≤6时④当x=6时⑤当x>6时5种情况讨论可得经过多长时间两人距C地的路程相等.【详解】(1)由题意得:甲的骑行速度为:=240(米/分),240×(11﹣1)÷2=1200(米),则点M的坐标为(6,1200),故答案为:240,(6,1200);(2)设MN的解析式为:y=kx+b(k≠0),∵y=kx+b(k≠0)的图象过点M(6,1200)、N(11,0),∴,解得,∴直线MN的解析式为:y=﹣240x+2640;即甲返回时距A地的路程y与时间x之间的函数关系式:y=﹣240x+2640;(3)设甲返回A地之前,经过x分两人距C地的路程相等,乙的速度:1200÷20=60(米/分),如图1所示:∵AB=1200,AC=1020,∴BC=1200﹣1020=180,分5种情况:①当0<x≤3时,1020﹣240x=180﹣60x,x=>3,此种情况不符合题意;②当3<x<﹣1时,即3<x<,甲、乙都在A、C之间,∴1020﹣240x=60x﹣180,x=4,③当<x≤6时,甲在B、C之间,乙在A、C之间,∴240x﹣1020=60x﹣180,x=<,此种情况不符合题意;④当x=6时,甲到B地,距离C地180米,乙距C地的距离:6×60﹣180=180(米),即x=6时两人距C地的路程相等,⑤当x>6时,甲在返回途中,当甲在B、C之间时,180﹣[240(x﹣1)﹣1200]=60x﹣180,x=6,此种情况不符合题意,当甲在A、C之间时,240(x﹣1)﹣1200﹣180=60x﹣180,x=8,综上所述,在甲返回A地之前,经过4分钟或6分钟或8分钟时两人距C地的路程相等.【点睛】本题考查了待定系数法一次函数的解析式的运用,一次函数与二元一次方程组的关系的运用,行程问题的数量关系的运用,注意由图像得出有用的信息及分类讨论思想在解题时的应用..23、20米.【解析】
过C作CE⊥AB于E,首先证明四边形CDBE为矩形,可得BD=CE=21,CD=BE=2,设AE=x,则=,求出x即可解决问题.【详解】如图,过C作CE⊥AB于E.∵CD⊥BD,AB⊥BD,
∴∠EBD=∠CDB=∠CEB=90°,∴四边形CDBE为矩形,
∴BD=CE=21
,CD=BE=6
,设AE=x
,
则=,解得:x=1.故旗杆高AB=AE+BE=1+6=20
(米).答:旗杆的高度为20米.【点睛】本题考查了相似三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用物长:影长=定值,构建方程解决问题,属于中考常考题型.24、(1)DG=2;(2)MN+NA=3NG【解析】
(1)取CF的中点H,连接GH;先证明△ABE≌△ADF(SAS),在证明△AEF是等腰直角三角形,由GH是Rt△EFC的中位线,在Rt△DGH中即可求解;(2)过点G作GK⊥MN,交NM的延长线与点K,交CF于点Q,过点G作GT⊥AF,交AF于点T;设BE=a,分别求出AB=3a,AE=2a,CE=(3-1)a,CF=(3+1)a,再由△AFE是等腰直角三角形,G是EF的中点,求出AG=2a, GQ=12CE=3-12a, 【详解】解:(1)取CF的中点H,连接GH,∵BE=DF,AB=AD,∠ADF=∠B=90°,∴△ABE≌△ADF(SAS),∴AF=AE,∵AB=3,BE=1,∴AF=AE=10,CF=4,CE=2,∴EF=2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度城市园林绿化项目弃土场租赁合同
- 《APOS学习理论》课件
- 2024年度股权投资协议(投资金额、股权分配和投资回报等)
- 足球英语课件
- 2024年度广告发布合同及补充协议2篇
- 2024年度保密合同:汽车企业商业秘密保密合同3篇
- 2024年度影视制作与发行合同:某影视公司3篇
- 《脊柱骨盆骨折》课件
- 《纸包装结构设计》课件
- 2024年微粉碎、超微粉碎设备项目资金筹措计划书代可行性研究报告
- 企业资产管理培训
- 公文写作课件教学课件
- 第45届世界技能大赛焊接项目全国选拔赛技术工作文件
- 药品经营使用和质量监督管理办法2024年宣贯培训课件
- 《老年人生活照护》试卷B卷及答案
- 课程设计几种排序算法
- 部编版(2024)一年级道德与法治上册第四单元第15课《我们不乱扔》教学课件
- 北京市历年中考语文现代文之议论文阅读30篇(含答案)(2003-2023)
- 2025届高考语文复习:作文审题立意+课件
- 自然资源调查监测技能竞赛理论考试题库大全-上(单选题)
- 人民民主是全过程民主
评论
0/150
提交评论