版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024年河北省秦皇岛市卢龙县八年级下册数学期末质量检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.要使式子3-x有意义,则x的取值范围是()A.x>0 B.x≥﹣3 C.x≥3 D.x≤32.测试五位学生的“一分钟跳绳”成绩,得到五个各不相同的数据,在统计时出现了一处错误:将最高成绩写得更高了,则计算结果不受影响的是()A.中位数 B.平均数 C.方差 D.极差3.已知点都在直线y=3x+b上,则的值的大小关系是()A. B. C. D.4.下列计算正确的是()A. B. C. D.5.某校将举办一场“中国汉字听写大赛”,要求每班推选一名同学参加比赛,为此,初二(1)班组织了五轮班级选拔赛,在这五轮选拔赛中,甲、乙两位同学的平均分都是96分,甲的成绩的方差是0.3,乙的成绩的方差是0.4,根据以上数据,下列说法正确的是()A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.无法确定甲、乙的成绩谁更稳定6.函数y=ax﹣a与y=(a≠0)在同一直角坐标系中的图象可能是()A. B.C. D.7.下列各组图形中不是位似图形的是()A. B.C. D.8.若分式的值为0,则()A. B. C. D.9.如图,在平面直角坐标系中,边长为1的正方形ABCD中,AD边的中点处有一动点P,动点P沿P→D→C→B→A→P运动一周,则P点的纵坐标y与点P走过的路程s之间的函数关系用图象表示大致是()A.B.C.D.10.如图,直线y=x+与y=kx-1相交于点P,点P的纵坐标为,则关于x的不等式x+>kx-1的解集在数轴上表示正确的是()A. B. C. D.11.下列方程中,有实数解的方程是()A. B.C. D.12.今年,重庆市南岸区广阳镇一果农李灿收获枇杷20吨,桃子12吨,现计划租用甲、乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨.李灿安排甲、乙两种货车一次性地将水果运到销售地的方案数有()A.1种 B.2种 C.3种 D.4种二、填空题(每题4分,共24分)13.如图,在平面直角坐标系中,已知点、、的坐标分别为,,.若点从点出发,沿轴正方向以每秒1个单位长度的速度向点移动,连接并延长到点,使,将线段绕点顺时针旋转得到线段,连接.若点在移动的过程中,使成为直角三角形,则点的坐标是__________.14.已知m>0,则在平面直角坐标系中,点M(m,﹣m2﹣1)的位置在第_____象限;15.计算:=_____.16.已知点P(-2,1),则点P关于x轴对称的点的坐标是__.17.比较大小:_____.(填“>”、“<"或“=")18.如图,已知中,,,,是的垂直平分线,交于点,连接,则___三、解答题(共78分)19.(8分)已知,,求.20.(8分)潮州市某学校为了改善办学条件,购置一批电子白板和台式电脑合共24台.经招投标,一台电子白板每台9000元,一台台式电脑每台3000元,设学校购买电子白板和台式电脑总费用为元,购买了台电子白板,并且台式电脑的台数不超过电子白板台数的3倍.(1)请求出与的函数解析式,并直接写出的取值范围(2)请问当购买多少台电子白板时,学校购置电子白板和台式电脑的总费用最少,最少多少钱?21.(8分)先化简÷(-),然后再从-2<x≤2的范围内选取一个合适的x的整数值代入求值22.(10分)如图,梯形ABCD中,AB//CD,AD=BC,延长AB到E,使BE=DC,连结AC、CE.求证AC=CE.23.(10分)在倡导“社会主义核心价值观”演讲比赛中,某校根据初赛成绩在七、八年级分别选出10名同学参加决赛,对这些同学的决赛成绩进行整理分析,绘制成如下团体成绩统计表和选手成绩折线统计图:七年级八年级平均数85.7_______众数______________方差37.427.8根据上述图表提供的信息,解答下列问题:(1)请你把上面的表格填写完整;(2)考虑平均数与方差,你认为哪个年级的团体成绩更好?(3)假设在每个年级的决赛选手中分别选出2个参加决赛,你认为哪个年级的实力更强一些?请说明理由.24.(10分)综合与探究问题情境:在综合实践课上,李老师让同学们根据如下问题情境,写出两个数学结论:如图(1),正方形ABCD的对角线交于点O,点O又是正方形OEFG的一个顶点(正方形OEFG的边长足够长),将正方形OEFG绕点O做旋转实验,OE与BC交于点M,OG与DC交于点N.“兴趣小组”写出的两个数学结论是:①S△OMC+S△ONC=S正方形ABCD;②BM1+CM1=1OM1.问题解决:(1)请你证明“兴趣小组”所写的两个结论的正确性.类比探究:(1)解决完“兴趣小组”的两个问题后,老师让同学们继续探究,再提出新的问题;“智慧小组“提出的问题是:如图(1),将正方形OEFG在图(1)的基础上旋转一定的角度,当OE与CB的延长线交于点M,OG与DC的延长线交于点N,则“兴趣小组”所写的两个结论是否仍然成立?请说明理由.25.(12分)某公司开发处一款新的节能产品,该产品的成本价为6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试销售,售价为10元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘制成图象,图中的折线ABC表示日销售量y(件)与销售时间x(天)之间的函数关系.(1)求y与x之间的函数表达式,并写出x的取值范围;(2)若该节能产品的日销售利润为W(元),求W与x之间的函数表达式,并求出日销售利润不超过1040元的天数共有多少天?(3)若5≤x≤17,直接写出第几天的日销售利润最大,最大日销售利润是多少元?26.如图,已知反比例函数y=的图像经过点A(-1,a),过点A作AB⊥x轴,垂足为点B,△AOB的面积为.(1)求a、k的值;(2)若一次函数y=mx+n图像经过点A和反比例函数图像上另一点,且与x轴交于M点,求AM的值:(3)在(2)的条件下,如果以线段AM为一边作等边△AMN,顶点N在一次数函数y=bx上,则b=______.
参考答案一、选择题(每题4分,共48分)1、D【解析】
根据被开方数是非负数,可得答案.【详解】解:由题意,得3﹣x≥0,解得x≤3,故选:D.【点睛】本题考查了二次根式有意义的条件,利用被开方数是非负数得出不等式是解题关键.2、A【解析】
根据中位数的定义解答可得.【详解】解:因为中位数是将数据按照大小顺序重新排列,代表了这组数据值大小的“中点”,不受极端值影响,所以将最高成绩写得更高了,计算结果不受影响的是中位数,故选A.【点睛】本题主要考查方差、极差、中位数和平均数,解题的关键是掌握中位数的定义.3、C【解析】
先根据直线y=1x+b判断出函数图象的增减性,再根据各点横坐标的大小进行判断即可.【详解】解:∵直线y=1x+b,k=1>0,
∴y随x的增大而增大,
又∵-2<-1<1,
∴y1<y2<y1.
故选:C.【点睛】本题考查的是一次函数的增减性,即一次函数y=kx+b(k≠0)中,当k>0,y随x的增大而增大;当k<0,y随x的增大而减小.4、B【解析】分析:根据二次根式的性质,二次根式的乘法,二次根式的除法逐项计算即可.详解:A.,故不正确;B.,故正确;C.,故不正确;D.,故不正确;故选B.点睛:本题考查了二次根式的性质与计算,熟练掌握二次根式的性质、二次根式的乘除法法则是解答本题的关键.5、A【解析】因为,,所以甲的成绩比乙的成绩稳定.6、D【解析】
当反比例函数图象分布在第一、三象限,则a>0,然后根据一次函数图象与系数的关系对A、B进行判断;当反比例函数图象分布在第二、四象限,则a<0,然后根据一次函数图象与系数的关系对C、D进行判断.【详解】解:A、从反比例函数图象得a>0,则对应的一次函数y=ax﹣a图象经过第一、三、四象限,所以A选项错误;B、从反比例函数图象得a>0,则对应的一次函数y=ax﹣a图象经过第一、三、四象限,所以B选项错误;C、从反比例函数图象得a<0,则对应的一次函数y=ax﹣a图象经过第一、二、四象限,所以C选项错误;D、从反比例函数图象得a<0,则对应的一次函数y=ax﹣a图象经过第一、二、四象限,所以D选项正确.故选:D.【点睛】本题考查了反比例函数图象:反比例函数y=的图象为双曲线,当k>0,图象分布在第一、三象限;当k<0,图象分布在第二、四象限.也考查了一次函数图象.7、D【解析】
根据位似图形的定义解答即可,注意排除法在解选择题中的应用.【详解】根据位似图形的定义,可得A,B,C是位似图形,B与C的位似中心是交点,A的位似中心是圆心;D不是位似图形.故选D.【点睛】本题考查了位似图形的定义.注意:①两个图形必须是相似形;②对应点的连线都经过同一点;③对应边平行.8、B【解析】
根据分式的值为0的条件,列式求解即可.分式的值为0的条件是:(1)分子等于0;(2)分母不为0.两个条件需同时具备,缺一不可.据此可以解答本题.【详解】解:由题意得:解得:x=1故答案为B【点睛】本题考查了分式的值为0的条件,即:(1)分子等于0;(2)分母不为0.两个条件需同时具备,缺一不可.据此可以解答本题.9、D【解析】试题解析:动点P运动过程中:①当0≤s≤时,动点P在线段PD上运动,此时y=2保持不变;②当<s≤时,动点P在线段DC上运动,此时y由2到1逐渐减少;③当<s≤时,动点P在线段CB上运动,此时y=1保持不变;④当<s≤时,动点P在线段BA上运动,此时y由1到2逐渐增大;⑤当<s≤4时,动点P在线段AP上运动,此时y=2保持不变.结合函数图象,只有D选项符合要求.故选D.考点:动点问题的函数图象.10、A【解析】
先把代入,得出,再观察函数图象得到当时,直线都在直线的上方,即不等式的解集为,然后用数轴表示解集.【详解】把代入,得,解得.当时,,所以关于x的不等式的解集为,用数轴表示为:.故选A.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数的值大于或小于的自变量x的取值范围;从函数图象的角度看,就是确定直线在x轴上或下方部分所有的点的横坐标所构成的集合.11、C【解析】
根据二次根式的非负性,可判断A、D无实数根,C有实数根,B解得x=2是分式方程的增根.【详解】A中,要使二次根式有意义,则x-2≥0,2-x≥0,即x=2,等式不成立,错误;B中,解分式方程得:x=2,是方程的增根,错误;D中,≥0,则≥3,等式不成立,错误;C中,∵,其中≥0,故-1≤x≤0解得:x=(舍),x=(成立)故选:C【点睛】本题考查二次根式的非负性和解分式方程,注意在求解分式方程时,一定要验根.12、C【解析】
设租用甲种货车x辆,则租用乙种货车(8-x)辆,根据8辆货车可一次将枇杷20吨、桃子12吨运完,即可得出关于x的一元一次不等式组,解之即可得出x的取值范围,再结合x为整数即可得出结论.【详解】解:设租用甲种货车x辆,则租用乙种货车(8-x)辆,
依题意,得:解得:2≤x≤1.
∵x为整数,
∴x=2,3,1,
∴共有3种租车方案.
故选:C.【点睛】本题考查了一元一次不等式组的应用,根据各数量之间的关系,正确列出一元一次不等式组是解题的关键.二、填空题(每题4分,共24分)13、(5,1),(−1)【解析】
当P位于线段OA上时,显然△PFB不可能是直角三角形;由于∠BPF<∠CPF=90°,所以P不可能是直角顶点,可分两种情况进行讨论:
①F为直角顶点,过F作FD⊥x轴于D,BP=6-t,DP=1OC=4,在Rt△OCP中,OP=t-1,由勾股定理易求得CP=t1-1t+5,那么PF1=(1CP)1=4(t1-1t+5);在Rt△PFB中,FD⊥PB,由射影定理可求得PB=PF1÷PD=t1-1t+5,而PB的另一个表达式为:PB=6-t,联立两式可得t1-1t+5=6-t,即t=;
②B为直角顶点,得到△PFB∽△CPO,且相似比为1,那么BP=1OC=4,即OP=OB-BP=1,此时t=1.【详解】解:能;
①若F为直角顶点,过F作FD⊥x轴于D,则BP=6-t,DP=1OC=4,
在Rt△OCP中,OP=t-1,
由勾股定理易求得CP1=t1-1t+5,那
么PF1=(1CP)1=4(t1-1t+5);
在Rt△PFB中,FD⊥PB,
由射影定理可求得PB=PF1÷PD=t1-1t+5,
而PB的另一个表达式为:PB=6-t,
联立两式可得t1-1t+5=6-t,即t=,
P点坐标为(,0),
则F点坐标为:(−1);
②B为直角顶点,得到△PFB∽△CPO,且相似比为1,
那么BP=1OC=4,即OP=OB-BP=1,此时t=1,
P点坐标为(1,0).FD=1(t-1)=1,
则F点坐标为(5,1).
故答案是:(5,1),(−1).【点睛】此题考查直角三角形的判定、相似三角形的判定和性质,解题关键在于求有关动点问题时要注意分析题意分情况讨论结果.14、四【解析】
直接利用各象限内点的坐标特点得出点的位置.【详解】,,点的位置在第四象限.故答案为:四.【点睛】此题主要考查了点的坐标,正确把握各象限内点的坐标特点是解题关键.15、【解析】分析:应用完全平方公式,求出算式的值是多少即可.详解:=8﹣4+1=9﹣4.故答案为9﹣4.点睛:本题主要考查了二次根式的混合运算,要熟练掌握,解答此题的关键是要明确:①与有理数的混合运算一致,运算顺序先乘方再乘除,最后加减,有括号的先算括号里面的.②在运算中每个根式可以看做是一个“单项式”,多个不同类的二次根式的和可以看作“多项式”.16、(-2,-1)【解析】
根据关于x轴对称的点的横坐标相等,纵坐标互为相反数,可得答案.【详解】点P(﹣2,1),则点P关于x轴对称的点的坐标是(﹣2,﹣1),故答案是:(﹣2,﹣1).【点睛】考查了关于x轴对称的对称点,利用关于x轴对称的点的横坐标相等,纵坐标互为相反数是解题关键.17、【解析】
首先分别求出两个数的平方的大小;然后根据:两个正实数,平方大的这个数也大,判断出两个数的大小关系即可.【详解】解:,,,.故答案为:.【点睛】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数负实数,两个正实数,平方大的这个数也大.18、5【解析】
由是的垂直平分线可得AD=CD,可得∠CAD=∠ACD,利用勾股定理逆定理可得∠ACB=90°由等角的余角相等可得:∠DCB=∠B,可得CD=BD,可知CD=BD=AD=【详解】解:∵是的垂直平分线∴AD=CD∴∠CAD=∠ACD∵,,又∵∴∴∠ACB=90°∵∠ACD+∠DCB=90°,∠CAB+∠B=90°∴∠DCB=∠B∴CD=BD∴CD=BD=AD=故答案为5【点睛】本题考查了线段垂直平分线、勾股定理逆定理以及等腰三角形的性质,掌握勾股定理逆定理及利用等腰三角形求线段是解题的关键.三、解答题(共78分)19、【解析】
由x+y=−5,xy=3,得出x<0,y<0,利用二次根式的性质化简,整体代入求得答案即可.【详解】∵x+y=−5,xy=3,∴x<0,y<0,∴===.【点睛】此题考查二次根式的化简求值,掌握二次根式的性质,渗透整体代入的思想是解决问题的关键.20、(1)(,且为整数);(2)当购买电子白板6台,台式电脑18台学校总费用最少钱,最少是108000元.【解析】
(1)根据题意“电子白板和台式电脑合共24台,一台电子白板每台9000元,一台台式电脑每台3000元”即可列出与的函数解析式,又根据“台式电脑的台数不超过电子白板台数的3倍”求出x的取值范围;(2)根据一次函数的性质即可得随的增大而增大,所以当时,有最小值.【详解】解:(1)依题意可得:,∵台式电脑的台数不超过电子白板台数的3倍,∴24-x≤3xx≥6,则x的取值范围为,且为整数;(2)∵,,∴随的增大而增大,∴当时,有最小值.(元)答:当购买电子白板6台,台式电脑18台学校总费用最少钱,最少是108000元.【点睛】本题考查了一次函数的性质和应用,解题的关键是读懂题意,找出之间的数量关系列出一次函数,此题难度不大.21、3.【解析】
先将原分式进行化解,化解过程中注意不为0的量,根据不为0的量结合x的取值范围得出合适的x的值,将其代入化简后的代数式中即可得出结论.【详解】解:原式===.其中,即x≠﹣1、0、1.又∵﹣2<x≤2且x为整数,∴x=2.将x=2代入中得:==3.考点:分式的化简求值.22、证明见解析【解析】本题主要考查了等腰梯形的性质及全等三角形的判定方法.根据等腰梯形的性质利用SAS判定△ADC≌△CBE,从而得到AC=CE证明:在梯形ABCD中,AB∥DC,AD=BC,∴四边形ABCD是等腰梯形,∴∠CDA=∠BCD.又∵DC∥AB,∴∠BCD=∠CBE,∵AD=BC,DC=BE,∴△ADC≌△CBE,故AC=CE.23、(1)八年级成绩的平均数1.7,七年级成绩的众数为80,八年级成绩的众数为1;(2)八年级团体成绩更好些;(3)七年级实力更强些.【解析】
(1)通过读图即可,即可得知众数,再根据图中数据即可列出求平均数的算式,列式计算即可.(2)根据方差的意义分析即可.(3)分别计算两个年级前两名的总分,得分较高的一个班级实力更强一些.【详解】解:(1)由折线统计图可知:七年级10名选手的成绩分别为:80,87,89,80,88,99,80,77,91,86;八年级10名选手的成绩分别为:1,97,1,87,1,88,77,87,78,88;八年级平均成绩=(1+97+1+87+1+88+77+87+78+88)=1.7(分),七年级成绩中80分出现的次数最多,所以七年级成绩的众数为80;八年级成绩中1分出现的次数最多,所以八年级成绩的众数为1.(2)由于七、八年级比赛成绩的平均数一样,而八年级的方差小于七年级的方差,方差越小,则其稳定性越强,所以应该是八年级团体成绩更好些;(3)七年级前两名总分为:99+91=190(分),八年级前两名总分为:97+88=11(分),因为190分>11分,所以七年级实力更强些.【点睛】本题考查了折线统计图,此题要求同学们不但要看懂折线统计图,而且还要掌握方差、平均数、众数的运用.24、(1)详见解析;(1)结论①不成立,结论②成立,理由详见解析.【解析】
(1)①利用正方形的性质判断出△BOM≌△CON,利用面积和差即可得出结论;②先得出OM=ON,BM=CN,再用勾股定理即可得出结论;(1)同(1)的方法即可得出结论.【详解】解:(1)①∵正方形ABCD的对角线相交于O,∴S△BOC=S正方形ABCD,OB=OC,∠BOC=90°,∠OBM=∠OCN,∵四边形OEFG是正方形,∴∠MON=90°,∴∠BOC﹣∠MOC=∠MON﹣∠MOC,∴∠BOM=∠COM,∴△BOM≌△CON,∴S△BOM=S△CON,∴S△OMC+S△ONC=S△OMC+S△BOM=S正方形ABCD;②由①知,△BOM≌△CON,∴OM=ON,BM=CN,在Rt△MCN中,MN1=CM1+CN1=CM1+BM1,在Rt△MON中,MN1=OM1+ON1=1OM1,∴BM1+CM1=1OM1;(1)结论①不成立,理由:∵正方形ABCD的对角线相交于O,∴S△BOC=S正方形ABCD,OB=BD,OC=AC,AC=BD,AC⊥BD,∠ABC=∠BCD=90°,AC平分∠BCD,BD平分∠ABC,∴OB=OC,∠BOC=90°,∠OBC=∠OCD=45°,∴∠OBM=∠OCN=135°,∵四边形OEFG是正方形,∴∠MON=90°,∴∠BOM=∠CON,∴△BOM≌△CON,∴S△BOM=S△CON,∴S△OMC﹣S△BOM=S△OMC﹣S△CON=S△BOC=S正方形ABCD,∴结论①不成立;结论②成立,理由:如图(1)连接MN,∵△BOM≌△CON,∴OM=ON,BM=CN,在Rt△MCN中,MN1=CM1+CN1=CM1+BM1,在Rt△MON中,MN1=OM1+ON1=1OM1,∴BM1+CM1=1OM1,∴结论②成立.【点睛】本题属于三角形综合题,主要考查了全等三角形的判定与性质,等腰直角三角形的判定与性质等知识,解题的关键是正确寻找全等三角形解决问题.25、(1);(2)日销售利润不超过1040元的天数共有18天;(3)第5天的日销售利润最大,最大日销售利润是880元.【解析】
(1)这是一个分段函数,利用待定系数法求y与x之间的函数表达式,并确定x的取值范围;
(2)根据利润=(售价-成本)×日销售量可得w与x之间的函数表达式,并分别根据分段函数计算日销售利润不超过1040元对应的x的值;
(3)分别根据5≤x≤10和10<x≤17两个范围的最大日销售利润,对比可得结论.【详解】(1)设线段AB段所表示的函数关系式为y=ax+b(1≤x≤10);BC段表示的函数关系式为y=mx+n(10<x≤30),
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 交通事故高发区域疏导安全方案
- 城市房屋拆除安全施工方案
- 乡村振兴战略下的生态造林方案
- 人防内安置塔吊施工方案的时间管理
- 农产品供货方案的季节性调整
- 道路养护混凝土边沟施工方案
- 国庆节家装活动方案
- 兽医实验室服务行业营销策略方案
- 数据库开发服务行业营销策略方案
- 招聘广告行业营销策略方案
- 单人心肺复苏操作评分标准
- 前庭康复-医学课件
- 智能林业装备与技术
- 安徽省芜湖市2023-2024学年七年级上学期期中数学试卷
- 地下害虫-蟋蟀类
- 企业周边环境风险分析
- 怎样写科研项目申请书(PPT)
- 矿产资源-三率-指标要求+第13部分:粘土矿产
- 语文大单元教学设计+作业设计:六上八单元跨学科主题活动
- 第一讲 中国传统艺术之书法
- 泵与泵站(水20)学习通课后章节答案期末考试题库2023年
评论
0/150
提交评论