辽宁省朝阳市第一中学2024届八年级下册数学期末经典试题含解析_第1页
辽宁省朝阳市第一中学2024届八年级下册数学期末经典试题含解析_第2页
辽宁省朝阳市第一中学2024届八年级下册数学期末经典试题含解析_第3页
辽宁省朝阳市第一中学2024届八年级下册数学期末经典试题含解析_第4页
辽宁省朝阳市第一中学2024届八年级下册数学期末经典试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

辽宁省朝阳市第一中学2024届八年级下册数学期末经典试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.若点P(a,b)在第二象限内,则a,b的取值范围是()A.a<0,b>0 B.a>0,b>0 C.a>0,b<0 D.a<0,b<02.9的算术平方根是()A.﹣3 B.±3 C.3 D.3.如图,字母M所代表的正方形的面积是()A.4 B.5 C.16 D.344.为了践行“绿色生活”的理念,甲、乙两人每天骑自行车出行,甲匀速骑行30公里的时间与乙匀速骑行25公里的时间相同,已知甲每小时比乙多骑行2公里,设甲每小时骑行x公里,根据题意列出的方程正确的是()A. B.C. D.5.下列说法:(1)的立方根是2,(2)的立方根是±5,(3)负数没有平方根,(4)一个数的平方根有两个,它们互为相反数.其中错误的有()A.4个 B.3个 C.2个 D.1个6.如图,在正方形ABCD的外侧,以AD为边作等边△ADE,连接BE,则∠AEB的度数为()A.15° B.20° C.25° D.30°7.用配方法解方程时,配方后正确的是()A. B. C. D.8.如果直线y=kx+b经过一、三、四象限,那么直线y=bx+k经过第()象限A.一、二、三 B.一、二、四 C.一、三、四 D.二、三、四9.如图,点A1、B1、C1分别为△ABC的边BC、CA、AB的中点,点A2、B2、C2分别为△A1B1C1的边B1C1、C1A1、A1B1的中点,若△ABC的面积为1,则△A2B2C2的面积为()A. B. C. D.10.式子在实数范围内有意义,则x的取值范围是()A.x>1 B.x≥1 C.x<1 D.x≤111.下列各组数中,不是勾股数的为()A.3,4,5 B.6,8,10 C.5,12,13 D.5,7,1012.已知直线y=(k﹣2)x+k经过第一、二、四象限,则k的取值范围是()A.k≠2 B.k>2 C.0<k<2 D.0≤k<2二、填空题(每题4分,共24分)13.若一次函数y=kx+b图象如图,当y>0时,x的取值范围是___________

.14.甲、乙两人进行射击测试,每人10次射击成绩的平均数都是8.5环,方差分别是:S甲2=2,S乙2=1.5,则射击成绩较稳定的是(填“甲”或“乙“).15.以正方形ABCD的边AD作等边△ADE,则∠BEC的度数是_____.16.一个数的平方等于这个数本身,这个数为_________.17.如图,平行四边形中,为的中点,连接,若平行四边形的面积为,则的面积为____.18.将直线y=2x+3向下平移2个单位,得直线_____.三、解答题(共78分)19.(8分)某学校计划在总费用2300元的限额内,租用客车送234名学生和6名教师集体外出活动,每辆客车上至少要有1名教师.现有甲、乙两种大客车,它们的载客量和租金如下表所示.甲种客车乙种客车载客量/(人/辆)4530租金/(元/辆)400280(1)共需租多少辆客车?(2)请给出最节省费用的租车方案.20.(8分)如图,△ABC中,CD平分∠ACB,CD的垂直平分线分别交AC、DC、BC于点E、F、G,连接DE、DG.(1)求证:四边形DGCE是菱形;(2)若∠ACB=30°,∠B=45°,CG=10,求BG的长.21.(8分)甲、乙两家旅行社为了吸引更多的顾客,分别推出赴某地旅游的团体(多于4人)优惠办法.甲旅行社的优惠办法是:买4张全票,其余人按半价优惠;乙旅行社的优惠办法是:所有人都打七五折优惠.已知这两家旅行社的原价均为每人1000元,那么随着团体人数的变化,哪家旅行社的收费更优惠.22.(10分)如图,一次函数与反比例函数的图象交于,两点(1)求一次函数的解析式;(2)根据图象直接写出关于的不等式的解集;(3)求的面积.23.(10分)孝感市委市政府为了贯彻落实国家的“精准扶贫”战略部署,组织相关企业开展扶贫工作,博大公司为此制定了关于帮扶A、B两贫困村的计划.今年3月份决定从某地运送152箱鱼苗到A、B两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗.已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A、B两村的运费如表:目的地费用车型A村(元/辆)B村(元/辆)大货车800900小货车400600(1)求这15辆车中大小货车各多少辆?(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B两村总运费为y元;①试求出y与x的函数解析式;②若运往A村的鱼苗不少于108箱,请你写出使总运费最少的货车调配方案,并求出最少运费.24.(10分)计算(1)计算:(2)分解因式:25.(12分)甲、乙两名队员的10次射击训练,成绩分别被制成下列两个统计图.并整理分析数据如下表:平均成绩/环中位数/环众数/环方差甲771.2乙78(1)求,,的值;(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?26.在矩形中ABCD,AB=12,P是边AB上一点,把△PBC沿直线PC折叠,顶点B的对位点G,过点B作BE⊥CG,垂足为E且在AD上,BE交PC于点F(1)如图1,若点E是AD的中点,求证:△AEB≌△DEC;(2)如图2,①求证:BP=BF;②当AD=25,且AE<DE时,求的值.

参考答案一、选择题(每题4分,共48分)1、A【解析】

点在第二象限的条件是:横坐标是负数,纵坐标是正数.【详解】解:因为点P(a,b)在第二象限,所以a<0,b>0,故选A.【点睛】本题考查了平面直角坐标系中各象限点的坐标的符号特征,第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).2、C【解析】试题分析:9的算术平方根是1.故选C.考点:算术平方根.3、C【解析】分析:根据勾股定理:直角三角形斜边的平方减直角边的平方等于另一直角边的平方,可得答案.详解:由勾股定理,得:M=25﹣9=1.故选C.点睛:本题考查了勾股定理,利用了勾股定理:两直角边的平方和等于斜边的平方.4、C【解析】解:设甲每小时骑行x公里,根据题意得:.故选C.点睛:此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系,再列出方程.5、B【解析】

①根据立方根的性质即可判定;②根据立方根的性质即可判定;③根据平方根的定义即可判定;④根据平方根的定义即可判定【详解】(1)的立方根是2,2的立方根是,故①错误;(2)=-5,-5的立方根是-,故②错误;(3)负数没有平方根,原来的说法正确;(4)一个正数的平方根有两个,它们互为相反数,故④错误.错误的有3个.故选:B.【点睛】此题考查立方根的性质,平方根的定义,解题关键在于掌握其性质6、A【解析】

根据△ADE为等边三角形,即可得出AE=AD,则AE=AB,由此可以判断△ABE为等腰三角形.△ADE为等边三角形,则∠DAE=60°,由此可以得出∠BAE=150°,根据△ABE为等腰三角形,即可得出∠AEB的度数.【详解】∵△ADE为等边三角形,∴AE=AD、∠DAE=60°,∵四边形ABCD为正方形,则AB=AD,∴AE=AB,则△ABE为等腰三角形,∴∠AEB=∠ABE====15°,则答案为A.【点睛】解决本题的关键在于得出△ABE为等腰三角形,再根据等腰三角的性质得出∠AEB的读数.7、B【解析】

根据配方法解方程的方法和步骤解答即可.【详解】解:对于方程,移项,得:,两边同时除以3,得:,配方,得:,即.故选:B.【点睛】本题考查了用配方法解一元二次方程,属于基础题型,熟练掌握配方的方法和步骤是解答的关键.8、B【解析】

根据图象在坐标平面内的位置关系确定k,b的取值范围,从而求解.【详解】解:已知直线y=kx+b经过第一、三、四象限,则得到k>0,b<0,那么直线y=bx+k经过第一、二、四象限,故选:B.【点睛】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限;b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.9、D【解析】

由于A1、B1、C1分别是△ABC的边BC、CA、AB的中点,就可以得出△A1B1C1∽△ABC,且相似比为,面积比为,就可求出△A1B1C1的面积=,同样的方法得出△A2B2C2的面积=.【详解】解:∵A1、B1、C1分别是△ABC的边BC、CA、AB的中点,∴A1B1、A1C1、B1C1是△ABC的中位线,∴△A1B1C1∽△ABC,且相似比为,∴S△A1B1C1:S△ABC=1:4,且S△ABC=1,∴S△A1B1C1=.∵A2、B2、C2分别是△A1B1C1的边B1C1、C1A1、A1B1的中点,∴△A1B1C1∽△A2B2C2且相似比为,∴△A2B2C2的面积=×S△A1B1C1=.故选:D.【点睛】本题考查了三角形中位线定理的运用,相似三角形的判定与性质的运用.根据中位线定理得出三角形相似是解决此题的关键.10、B【解析】

根据被开方数大于等于0列式计算即可得解.【详解】解:由题意得,x﹣1≥0,解得x≥1.故选:B.【点睛】本题主要考查了二次根式有意义的条件,掌握被开方数大于等于0是解题的关键.11、D【解析】

满足的三个正整数,称为勾股数,由此判断即可.【详解】解:、,此选项是勾股数;、,此选项是勾股数;、,此选项是勾股数;、,此选项不是勾股数.故选:.【点睛】此题主要考查了勾股数,关键是掌握勾股数的定义.12、C【解析】

由一次函数经过的象限确定其图象的增减性,然后确定k的取值范围即可.【详解】∵一次函数y=(k-2)x+k的图象经过第一、二、四象限,

∴k-2<0且k>0;

∴0<k<2,

故选C.【点睛】考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限;b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.二、填空题(每题4分,共24分)13、x<-1【解析】

由图象可知一次函数y=kx+b的图象经过点(-1,0)、(0,-2).∴,解得,∴该一次函数的解析式为y=−2x-2,∵−2<0,∴当y>0时,x的取值范围是:x<-1.故答案为x<-1.14、乙【解析】

解:∵S甲2=2,S乙2=1.5,∴S甲2>S乙2,∴乙的射击成绩较稳定.故答案为乙.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差通常用s2来表示,计算公式是:s2=[(x1﹣x¯)2+(x2﹣x¯)2+…+(xn﹣x¯)2];方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.15、30°或150°.【解析】

分等边△ADE在正方形的内部和外部两种情况分别求解即可得.【详解】如图1,∵四边形ABCD为正方形,△ADE为等边三角形,∴AB=BC=CD=AD=AE=DE,∠BAD=∠ABC=∠BCD=∠ADC=90°,∠AED=∠ADE=∠DAE=60°,∴∠BAE=∠CDE=150°,又AB=AE,DC=DE,∴∠AEB=∠CED=15°,则∠BEC=∠AED﹣∠AEB﹣∠CED=30°;如图2,∵△ADE是等边三角形,∴AD=DE,∵四边形ABCD是正方形,∴AD=DC,∴DE=DC,∴∠CED=∠ECD,∴∠CDE=∠ADC﹣∠ADE=90°﹣60°=30°,∴∠CED=∠ECD=×(180°﹣30°)=75°,∴∠BEC=360°﹣75°×2﹣60°=150°,故答案为30°或150°.【点睛】本题考查了正方形的性质,等边三角形的性质,等腰三角形的判定与性质,熟记各性质、运用分类讨论思想画出符合题意的图形并准确识图是解题的关键.16、0或1【解析】

根据特殊数的平方的性质解答.【详解】解:平方等于这个数本身的数只有0,1.故答案为:0或1.【点睛】此题考查了特殊数值的平方的性质,要注意平时在学习中进行积累.17、6【解析】

如图,连接AC.首先证明△ABC≌△CDA,可得S△ABC=S△ADC=×24=12(cm2),由AE=DE,可得S△CDE=S△ADC=6;【详解】解:如图,连接.∵四边形是平行四边形,∴,,∵,∴,∴,∵,∴,故答案为6【点睛】本题考查平行四边形的性质、三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.18、y=2x+1.【解析】根据“左加右减,上加下减”的平移规律可得:将直线y=-2x+3先向下平移3个单位,得到直线y=-2x+3-2,即y=-2x+1.故答案是:y=﹣2x+1.三、解答题(共78分)19、(1)客车总数为6;(1)租4辆甲种客车,1辆乙种客车费用少.【解析】分析:(1)由师生总数为140人,根据“所需租车数=人数÷载客量”算出租载客量最大的客车所需辆数,再结合每辆车上至少要有1名教师,即可得出结论;(1)设租乙种客车x辆,则甲种客车(6﹣x)辆,根据师生总数为140人以及租车总费用不超过1300元,即可得出关于x的一元一次不等式,解不等式即可得出x的值,再设租车的总费用为y元,根据“总费用=租A种客车所需费用+租B种客车所需费用”即可得出y关于x的函数关系式,根据一次函数的性质结合x的值即可解决最值问题.详解:(1)∵(134+6)÷45=5(辆)…15(人),∴保证140名师生都有车坐,汽车总数不能小于6;∵只有6名教师,∴要使每辆汽车上至少要有1名教师,汽车总数不能大于6;综上可知:共需租6辆汽车.(1)设租乙种客车x辆,则甲种客车(6﹣x)辆,由已知得:,解得:≤x≤1.∵x为整数,∴x=1,或x=1.设租车的总费用为y元,则y=180x+400×(6﹣x)=﹣110x+1400.∵﹣110<0,∴当x=1时,y取最小值,最小值为1160元.故租甲种客车4辆、乙种客车1辆时,所需费用最低,最低费用为1160元.点睛:本题考查了一次函数的应用、解一元一次不等式组以及一次函数的性质,解题的关键是:(1)根据数量关系确定租车数;(1)找出y关于x的函数关系式.本题属于中档题,难度不大,解决该题型题目时,根据数量关系找出函数关系式(不等式或不等式组)是关键.20、(1)证明见解析;(2)BG=5+5.【解析】

(1)由角平分线的性质和中垂线性质可得∠EDC=∠DCG=∠ACD=∠GDC,可得CE∥DG,DE∥GC,DE=EC,可证四边形DGCE是菱形;

(2)过点D作DH⊥BC,由锐角三角函数可求DH的长,GH的长,BH的长,即可求BG的长.【详解】(1)∵CD平分∠ACB,∴∠ACD=∠DCG∵EG垂直平分CD,∴DG=CC,DE=EC∴∠DCG=∠GDC,∠ACD=∠EDC∴∠EDC=∠DCG=∠ACD=∠GDC∴CE∥DG,DE∥GC∴四边形DECG是平行四边形又∵DE=EC∴四边形DGCE是菱形(2)如图,过点D作DH⊥BC,∵四边形DGCE是菱形,∴DE=DG=GC=10,DG∥EC∴∠ACB=∠DGB=30°,且DH⊥BC∴DH=5,HG=DH=5∵∠B=45°,DH⊥BC∴∠B=∠BDH=45°∴BH=DH=5∴BG=BH+HG=5+5【点睛】本题考查了菱形的判定和性质,线段垂直平分线的性质,熟练掌握菱形的判定是关键.21、当团体人数超过8人时,选甲旅行社收费更优惠;当团体人数为8人时,两家旅行社收费相同;当团体人数少于8人时,选乙旅行社收费更优惠.【解析】

设团体有x人,收费y元,得出y甲=4000+500(x-4)=500x+2000,y乙=750x,再分情况列不等式和方程求解可得.【详解】设团体有人,收费元∴,∵当时,,解得;∴当时,,解得;当时,,解得;∴当团体人数超过8人时,选甲旅行社收费更优惠;当团体人数为8人时,两家旅行社收费相同;当团体人数少于8人时,选乙旅行社收费更优惠.【点睛】本题主要考查一元一次不等式的应用,解题的关键是理解题意,找到题目中蕴含的相等关系与不等关系.22、(1);(2)或(3).【解析】

(1)把A和B代入反比例函数解析式即可求得坐标,然后用待定系数法求得一次函数的解析式;(2)不等式的解集就是:对于相同的x的值,反比例函数的图象在上边的部分自变量的取值范围;(3)根据三角形的面积公式即可得到结论.【详解】(1)把,代入中,得,∴,的坐标分别为,把,代入中,得解得∴一次函数的表达式为(2)根据图象得,不等式的解集为:或时.(3)设一次函数与轴相交于点,当时,∴点的坐标为∴【点睛】本题综合考查一次函数与反比例函数的图象与性质,同时考查用待定系数法求函数解析式.本题需要注意无论是自变量的取值范围还是函数值的取值范围,都应该从交点入手思考;需注意反比例函数的自变量不能取1.23、(1)这15辆车中大货车用8辆,小货车用7辆;(2)①y=100x+9400(3≤x≤8,且x为整数);②使总运费最少的调配方案是:7辆大货车、3辆小货车前往A村;1辆大货车、4辆小货车前往B村.最少运费为10100元.【解析】

(1)设大货车用x辆,小货车用y辆,根据大、小两种货车共15辆,运输152箱鱼苗,列方程组求解;(2)设前往A村的大货车为x辆,则前往B村的大货车为(8﹣x)辆,前往A村的小货车为(10﹣x)辆,前往B村的小货车为[7﹣(10﹣x)]辆,根据表格所给运费,求出y与x的函数关系式;(3)结合已知条件,求x的取值范围,由(2)的函数关系式求使总运费最少的货车调配方案.【详解】解:(1)设大货车用x辆,小货车用y辆,根据题意得:,解得:.故这15辆车中大货车用8辆,小货车用7辆.(2)y=800x+900(8﹣x)+400(10﹣x)+600[7﹣(10﹣x)]=100x+9400(3≤x≤8,且x为整数).(3)由题意得:12x+8(10﹣x)≥108,解得:x≥7,又∵3≤x≤8,∴7≤x≤8且为整数,∵y=100x+9400,k=100>0,y随x的增大而增大,∴当x=7时,y最小,最小值为y=100×7+9400=10100(元).答:使总运费最少的调配方案是:7辆大货车、3辆小货车前往A村;1辆大货车、4辆小货车前往B村.最少运费为10100元.【点睛】本题考查了一次函数的应用,二元一次方程组的应用.关键是根据题意,得出安排各地的大、小货车数与前往B村的大货车数x的关系.24、(1);(2).【解析】

(1)原式第一项利用多项式乘以多项式法则计算,第二项利用多项式除以单项式法则计算即可得到结果;

(2)原式提取公因式,再利用完全平方公式分解即可.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论