2024年陕西省安康紫阳县联考八年级下册数学期末经典模拟试题含解析_第1页
2024年陕西省安康紫阳县联考八年级下册数学期末经典模拟试题含解析_第2页
2024年陕西省安康紫阳县联考八年级下册数学期末经典模拟试题含解析_第3页
2024年陕西省安康紫阳县联考八年级下册数学期末经典模拟试题含解析_第4页
2024年陕西省安康紫阳县联考八年级下册数学期末经典模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年陕西省安康紫阳县联考八年级下册数学期末经典模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,AC、BD是四边形ABCD的对角线,若E、F、G、H分别是BD、BC、AC、AD的中点,顺次连接E、F、G、H四点,得到四边形EFGH,则下列结论不正确的是()A.四边形EFGH一定是平行四边形 B.当AB=CD时,四边形EFGH是菱形C.当AC⊥BD时,四边形EFGH是矩形 D.四边形EFGH可能是正方形2.木匠有32米的木材,想要在花圃周围做边界,以下四种设计方案中,设计不合理的是()A. B. C. D.3.如图所示,矩形ABCD中,AE平分交BC于E,,则下面的结论:①是等边三角形;②;③;④,其中正确结论有()A.1个 B.2个 C.3个 D.4个4.一个多边形的每个内角均为108º,则这个多边形是()A.七边形B.六边形C.五边形D.四边形5.如图,已知正比例函数与一次函数的图象交于点.下面有四个结论:①;②;③当时,;④当时,.其中正确的是()A.①② B.②④ C.③④ D.①③6.已知一次函数的图象如图所示,当时,的取值范围是()A. B. C. D.7.一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,假设每分的进水量和出水量是两个常数,容器内的水量y(单位:升)与时间x(单位:分)之间的关系如图.则每分钟的进水量与出水量分别是()A.5、2.5 B.20、10 C.5、3.75 D.5、1.258.在实际生活中,我们经常利用一些几何图形的稳定性或不稳定性,下列实物图中利用了稳定性的是()A.电动伸缩门 B.升降台C.栅栏 D.窗户9.在一次中学生田径运动会上,男子跳高项目的成绩统计如下:成绩人数28641表中表示成绩的一组数据中,众数和中位数分别是A., B., C., D.,10.为筹备班级联欢会,班干部对全班同学最爱吃的水果进行了统计,最终决定买哪种水果时,班干部最关心的统计量是()A.平均数 B.中位数C.众数 D.方差11.如图,在平行四边形ABCD中,下列结论中错误的是()A.∠1=∠2 B.AB⊥AC C.AB=CD D.∠BAD+∠ABC=180°12.如图,,,双曲线经过点,双曲线经过点,已知点的纵坐标为-2,则点的坐标为()A. B.C. D.二、填空题(每题4分,共24分)13.化简:32-314.如图,BD是矩形ABCD的一条对角线,点E、F分别是BD、BC的中点,若AB=8,BC=6,则AE+EF的长为_____.15.如图,直角三角形DEF是直角三角形ABC沿BC平移得到的,如果AB=6,BE=2,DH=1,则图中阴影部分的面积是____.16.一组数据:5,8,7,6,9,则这组数据的方差是_____.17.为了解某篮球队队员身高,经调查结果如下:3人,2人,2人,3人,则该篮球队队员平均身高是__________.18.的计算结果是___________.三、解答题(共78分)19.(8分)分解因式:(1)(2)20.(8分)解答题.某校学生积极为地震灾区捐款奉献爱心.小颖随机抽查其中30名学生的捐款情况如下:(单位:元)2、5、35、8、5、10、15、20、15、5、45、10、2、8、20、30、40、10、15、15、30、15、8、25、25、30、15、8、10、1.(1)这30名学生捐款的最大值、最小值、极差、平均数各是多少?(2)将30名学生捐款额分成下面5组,请你完成频数统计表:(3)根据上表,作出频数分布直方图.21.(8分)如图,在平行四边形中,点,分别在边,的延长线上,且,分别与,交于点,.求证:.22.(10分)一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示:销售方式

粗加工后销售

精加工后销售

每吨获利(元)

1000

2000

已知该公司的加工能力是:每天能精加工5吨或粗加工15吨,但两种加工不能同时进行.受季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.(1)如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工?(2)如果先进行精加工,然后进行粗加工.①试求出销售利润元与精加工的蔬菜吨数之间的函数关系式;②若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多获得多少利润?此时如何分配加工时间?23.(10分)(1)计算:(2)解方程:24.(10分)已知四边形为菱形,,,的两边分别与射线、相交于点、,且.(1)如图1,当点是线段的中点时,请直接写出线段与之间的数量关系;(2)如图2,当点是线段上的任意一点(点不与点、重合)时,求证:;(3)如图3,当点在线段的延长线上,且时,求线段的长.25.(12分)如图,在四边形中,,是的中点,,,于点.(1)求证:四边形是菱形;(2)若,,求的长.26.小明想利用太阳光测量楼高.他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量情况如下:如图,小明边移动边观察,发现站到点E处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得小明落在墙上的影子高度CD=1.2m,CE=0.8m,CA=30m.(点A,E,C在同一直线上),已知小明的身高EF是1.7m,请你帮小明求出楼高AB.(结果精确到0.1m)

参考答案一、选择题(每题4分,共48分)1、C【解析】

根据三角形中位线定理、平行四边形、矩形、菱形、正方形的判定定理判断即可.【详解】解:∵E、F分别是BD、BC的中点,∴EF∥CD,EF=CD,∵H、G分别是AD、AC的中点,∴HG∥CD,HG=CD,∴HG∥EF,HG=EF,∴四边形EFGH是平行四边形,A说法正确,不符合题意;∵F、G分别是BC、AC的中点,∴FG=AB,∵AB=CD,∴FG=EF,∴当AB=CD时,四边形EFGH是菱形,B说法正确,不符合题意;当AB⊥BC时,EH⊥EF,∴四边形EFGH是矩形,C说法错误,符合题意;当AB=CD,AB⊥BC时,四边形EFGH是正方形,说法正确,不符合题意;故选:C.【点睛】此题考查中点四边形、三角形中位线定理,掌握平行四边形、矩形、菱形、正方形的判定定理是解题的关键.2、A【解析】

根据平移的性质以及矩形的周长公式分别求出各图形的周长即可得解.【详解】A、∵垂线段最短,∴平行四边形的另一边一定大于6m,∵2(10+6)=32m,∴周长一定大于32m;B、周长=2(10+6)=32m;C、周长=2(10+6)=32m;D、周长=2(10+6)=32m;故选:A.【点睛】本题考查了矩形的周长,平行四边形的周长公式,平移的性质,根据平移的性质第三个图形、第四个图形的周长相当于矩形的周长是解题的关键.3、C【解析】

根据矩形性质求出OD=OC,根据角求出∠DOC=60°即可得出三角形DOC是等边三角形,求出AC=2AB,即可判断②,求出∠BOE=75°,∠AOB=60相加即可求出,∠AOE根据等底等高的三角形面积相等得出.【详解】∵四边形ABCD是矩形,∴∠BAD=90°,OA=OC,OD=OB,AC=BD∴OA=OD=OC=OB∵AE平分∠BAD,∴∠DAE=15°.∴∠CAE=15°,∴∠DAC=30°.∵OA=OD,∴∠ODA=∠DAC=30°.∴∠DOC=60°.∵OD=OC,∴△ODC是等边三角形.∴①正确;∵四边形ABCD是矩形,∴AD∥BC,∠ABC=90°.∴∠DAC=∠ACB=30°.∴AC=2AB.∵AC>BC,∴2AB>BC.∴②错误;∵AD∥BC,∴∠DBC=∠ADB=30°.∵AE平分∠DAB,∠DAB=90°,∴∠DAE=∠BAE=45°.∵AD∥BC,∴∠DAE=∠AEB,∴∠AEB=∠BAE,∴AB=BE.∴四边形ABCD是矩形.∴∠DOC=60°,DC=AB,∵△DOC是等边三角形,∴DC=OD.∴BE=BO.∴∠BOE=75°,∵∠AOB=∠DOC=60°,∴∠AOE=135°.∴③正确;∵OA=OC,∴根据等底等高的三角形面积相等可知S△AOE=S△COE∴④正确故正确答案是C.【点睛】本题考查了矩形性质,平行线性质,角平分线定义,等边三角形的性质和判定,三角形的内角和定理等知识点的综合运用.4、C【解析】试题分析:因为这个多边形的每个内角都为108°,所以它的每一个外角都为72°,所以它的边数=360÷72=5(边).考点:⒈多边形的内角和;⒉多边形的外角和.5、D【解析】

利用两函数图象结合与坐标轴交点进而分别分析得出答案.【详解】如图所示:

∵y1=ax,经过第一、三象限,

∴a>0,故①正确;

∵与y轴交在正半轴,

∴b>0,

故②错误;

∵正比例函数y1=ax,经过原点,

∴当x<0时,函数图像位于x轴下方,∴y1<0;故③正确;

当x>2时,y1>y2,故④错误.

故选:D.【点睛】此题考查一次函数与一元一次不等式,正确利用数形结合分析是解题关键.6、C【解析】试题解析:从图像可以看出当自变量时,y的取值范围在x轴的下方,故故选C.7、C【解析】试题分析:∵t=4时,y=20,∴每分钟的进水量==5(升);∴4到12分钟,8分钟的进水量=8×5=40(升),而容器内的水量只多了30升-20升=10升,∴8分钟的出水量=40升-10升=30升,∴每分钟的进水量==3.75(升).故选C.考点:一次函数的应用.8、C【解析】

根据三角形具有稳定性和四边形具有不稳定性进行辨别即可.【详解】A.由平行四边形的特性可知,平行四边形具有不稳定性,所以容易变形,伸缩门运用了平行四边形易变形的特性;B.升降台也是运用了四边形易变形的特性;C.栅栏是由一些三角形焊接而成的,它具有稳定性;D.窗户是由四边形构成,它具有不稳定性.故选C.【点睛】此题主要考查了平行四边形的特性是容易变形以及三角形具有稳定性.9、B【解析】

根据出现最多的数为众数解答;

按照从小到大的顺序排列,然后找出中间的一个数即为中位数.【详解】出现次数最多的数为1.55m,是众数;

21个数按照从小到大的顺序排列,中间一个是1.60m,所以中位数是1.60m.

故选B.【点睛】考查了众数,中位数的定义,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.10、C【解析】分析:一组数据中出现次数最多的一个数是这组数据的众数,班长最关心吃哪种水果的人最多,即这组数据的众数.详解:吃哪种水果的人最多,就决定最终买哪种水果,而一组数据中出现次数最多的一个数是这组数据的众数.故选C.点睛:此题主要考查统计的有关知识,主要是众数的意义.反映数据集中程度的统计量有平均数、中位数、众数方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.11、B【解析】

根据平行四边形的性质逐一进行分析即可得.【详解】∵四边形ABCD是平行四边形,∴AB//CD,AB=CD,AD//BC,故C选项正确,不符合题意;∵AB//CD,∴∠1=∠2,故A选项正确,不符合题意;∵AD//BC,∴∠BAD+∠ABC=180°,故D选项正确,不符合题意;无法得到AB⊥AC,故B选项错误,符合题意,故选B.【点睛】本题考查了平行四边形的性质,熟练掌握平行四边形的性质定理是解题的关键.12、A【解析】

过点作轴于点,过点作延长线于点,交轴于点,证明,得到,,再根据B点坐标在上取出k的值.【详解】解析:过点作轴于点,过点作延长线于点,交轴于点.∵∴.∴.∵在上,∴且,∴,∴.∵,∴.∵在上,∴,解得,(舍).∴.【点睛】本题考查了反比例函数的图象与性质,三线合一性质.通过构造全等三角形,用含的式子来表示点坐标,代入点坐标求得值.难度中等,计算需要仔细.二、填空题(每题4分,共24分)13、-6【解析】

根据二次根式的乘法运算法则以及绝对值的性质和二次根式的化简分别化简整理得出即可:【详解】32故答案为-614、8【解析】

先根据三角形中位线定理得到EF的长,再根据直角三角形斜边上中线的性质,即可得到AE的长,进而得出计算结果.【详解】∵点E,F分别是BD,DC的中点,∴FE是△BCD的中位线,∴EF=BC=3,∵∠BAD=90°,AD=BC=6,AB=8,∴BD=10,又∵E是BD的中点,∴Rt△ABD中,AE=BD=5,∴AE+EF=5+3=8,故答案为:8【点睛】本题主要考查了矩形的性质以及三角形中位线定理的运用,解题时注意:在直角三角形中,斜边上的中线等于斜边的一半;三角形的中位线平行于第三边,并且等于第三边的一半.15、11【解析】

根据平移的性质可得到相等的边与角,利用平行线分线段成比例可求出EC,再根据即可得到答案.【详解】解:由平移的性质知,DE=AB=6,HE=DE-DH=5,CF=BE=2,HC∥DF,∠DEF=∠B=90°,∴HE:DE=EC:EF=EC:(EC+CF),即5:6=EC:(EC+2),∴EC=10,EF=EC+CF=10+2=12故答案为:11.【点睛】本题利用了平行线截线段对应成比例和平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.16、2【解析】

先求出平均数,然后再根据方差的计算公式进行求解即可.【详解】=7,=2,故答案为:2.【点睛】本题考查了方差的计算,熟记方差的计算公式是解题的关键.17、173.1.【解析】

根据加权平均数的定义求解可得.【详解】解:(172×3+173×2+174×2+171×3)÷(3+2+2+3)=(116+346+348+121)÷10=1731÷10=173.1(cm)答:该篮球队队员平均身高是173.1cm.故答案为:173.1.【点睛】本题主要考查加权平均数,熟练掌握加权平均数的定义是解题的关键.18、3.5【解析】

原式=4-=3=3.5,故答案为3.5.三、解答题(共78分)19、(1);(2).【解析】

(1)原式提取公因式,再利用完全平方公式分解即可;

(2)原式变形后,提取公因式即可.【详解】解:(1)原式;

(2)原式.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.20、(1)最大值为1,最小值为2,极差为48,平均数为17.7元.(2)填表见解析;(3)补图见解析.【解析】分析:(1)根据给出的数据以及极差、平均数的计算方法直接计算即可解答.

(2)分别找出各组的人数填表即可解答.

(3)根据频数分布表画出频数分布直方图即可解答.详解:(1)这30名学生捐款的最大值为1,最小值为2,极差为1﹣2=48,平均数为(2+5+35+8+5+10+15+20+15+5+45+10+2+8+20+30+40+10+15+15+30+15+8+25+25+30+15+8+10+1)÷30=17.7元.(2)填表如下:.(3)画图如下:点睛:本题主要考查极差、平均数的定义以及画频数分布直方图的能力,正确画图是关键.21、见详解【解析】

利用平行四边形的性质,结合条件可得出AF=EC,再利用全等三角形的判定与性质定理,即可得到结论.【详解】∵在平行四边形中,∴AD=BC,∠A=∠C,AD∥BC,∴∠E=∠F,∵,∴AF=EC,在∆AGF与∆CHE中,∵,∴∆AGF≅∆CHE(ASA),∴AG=CH.【点睛】本题主要考查平行四边形的性质定理以及三角形全等的判定和性质定理,掌握平行四边形的性质以及ASA证三角形全等,是解题的关键.22、(1)应安排4天进行精加工,8天进行粗加工(2)①=②安排1天进行精加工,9天进行粗加工,可以获得最多利润为元【解析】

解:(1)设应安排天进行精加工,天进行粗加工,根据题意得解得答:应安排4天进行精加工,8天进行粗加工.(2)①精加工吨,则粗加工()吨,根据题意得=②要求在不超过10天的时间内将所有蔬菜加工完,解得又在一次函数中,,随的增大而增大,当时,精加工天数为=1,粗加工天数为安排1天进行精加工,9天进行粗加工,可以获得最多利润为元.23、(1);(2).【解析】

(1)先把分子分母因式分解,再把计算乘法,最后相加减;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】解:(1)原式(2)去分母:.经检验是原方程的根所以,原方程的解是【点睛】此题考查了解分式方程,熟练掌握运算法则是解本题的关键.24、(1);(2)见解析;(3).【解析】

(1)连接AC,先证△ABC是等边三角形,再由题意得出AE⊥BC,∠B=60°求解可得;

(2)证△BAE≌△CAF即可得;

(3)作AG⊥BC,由∠EAB=15°,∠ABC=60°知∠AEB=45°,根据AG=2得EG=AG=2,EB=EG-BG=2-2,再证△AEB≌△AFC知EB=FC,由FD=FC+CD=EB

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论