福建省莆田市第二十四中学2024年数学八年级下册期末学业水平测试试题含解析_第1页
福建省莆田市第二十四中学2024年数学八年级下册期末学业水平测试试题含解析_第2页
福建省莆田市第二十四中学2024年数学八年级下册期末学业水平测试试题含解析_第3页
福建省莆田市第二十四中学2024年数学八年级下册期末学业水平测试试题含解析_第4页
福建省莆田市第二十四中学2024年数学八年级下册期末学业水平测试试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省莆田市第二十四中学2024年数学八年级下册期末学业水平测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.为迎接中考体育加试,小刚和小亮分别统计了自己最近10次跳绳比赛,下列统计量中能用来比较两人成绩稳定程度的是()A.平均数B.中位数C.众数D.方差2.点P(x,y)在第一象限,且x+y=8,点A的坐标为(6,0),设△OPA的面积为S.当S=12时,则点P的坐标为()A.(6,2) B.(4,4) C.(2,6) D.(12,﹣4)3.如图,直线y=kx+b经过点A(-1,-2)和点B(-2,0),直线y=2x过点A,则不等式2x<kx+b<0的解集为()A.x<-2 B.-2<x<-1 C.-2<x<0 D.-1<x<04.小华所在的九年级一班共有50名学生,一次体检测量了全班学生的身高,由此求得该班学生的平均身高是1.65米,而小华的身高是1.66米,下列说法错误的是()A.1.65米是该班学生身高的平均水平B.班上比小华高的学生人数不会超过25人C.这组身高数据的中位数不一定是1.65米D.这组身高数据的众数不一定是1.65米5.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途时,自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,他比修车前加快了速度继续匀速行驶,下面是行驶路程s(m)关于时间t(min)的函数图象,那么符合小明行驶情况的大致图象是()ABCD6.一组数据2,3,5,5,4的众数、中位数分别是()A.5,4 B.5,5 C.5,4.5 D.5,3.87.如图,在长为31m,宽为10m的矩形空地上修建同样宽的道路(图中阴影部分),剩余的空地上种植草坪,使草坪的面积为540m1.设道路的宽为xm,根据题意,下面列出的方程正确的是()A.31x+10x﹣1x1=540B.31x+10x=31×10﹣540C.(31﹣x)(10﹣x)=540D.(31﹣x)(10﹣x)=31×10﹣5408.如图,矩形ABCD的面积为10cm2,它的两条对角线交于点O1,以AB、AO1为两邻边作平行四边形ABC1O1,平行四边形ABC1O1的对角线交于点O2,同样以AB、AO2为两邻边作平行四边形ABC2O2,…,依此类推,则平行四边形ABCnOn的面积为()A.cm2 B.cm2 C.cm2 D.cm29.若分式有意义,则实数x的取值范围是()A. B. C. D.10.一组数据2,2,4,3,6,5,2的众数和中位数分别是A.3,2 B.2,3 C.2,2 D.2,411.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数都是9.5环,方差分别为S甲2=0.54,S乙2=A.甲 B.乙 C.丙 D.丁12.下列说法中,错误的是()A.两组对边分别相等的四边形是平行四边形B.有一个角是直角的平行四边形是矩形C.有三条边相等的四边形是菱形D.对角线互相垂直的矩形是正方形二、填空题(每题4分,共24分)13.已知为分式方程,有增根,则_____.14.已知菱形的周长为10cm,一条对角线长为6cm,则这个菱形的面积是_____cm1.15.分式方程的解为_____.16.二次根式中,x的取值范围是.17.现有一张矩形纸片ABCD(如图),其中AB=4cm,BC=6cm,点E是BC的中点.将纸片沿直线AE折叠,点B落在四边形AECD内,记为点B′.则线段B′C=.18.如图,正方形ABCD的边长为6,点E,F分别在AB,AD上,若CE=,且∠ECF=45°,则CF的长为__________.三、解答题(共78分)19.(8分)如图,在△ABC中,点D、E、F分别是边AB、BC、CA的中点,AH是边BC上的高.(1)求证:四边形ADEF是平行四边形;(2)若∠AHF=20°,∠AHD=50°,求∠DEF的度数.20.(8分)如图1,在等边△ABC中,AB=BC=AC=8cm,现有两个动点E,P分别从点A和点B同时出发,其中点E以1cm/秒的速度沿AB向终点B运动;点P以2cm/秒的速度沿射线BC运动.过点E作EF∥BC交AC于点F,连接EP,FP.设动点运动时间为t秒(0<t≤8).(1)当点P在线段BC上运动时,t为何值,四边形PCFE是平行四边形?请说明理由;(2)设△EBP的面积为y(cm2),求y与t之间的函数关系式;(3)当点P在射线BC上运动时,是否存在某一时刻t,使点C在PF的中垂线上?若存在,请直接给出此时t的值(无需证明),若不存在,请说明理由.21.(8分)甲、乙两个车间接到加工一批零件的任务,从开始加工到完成这项任务共用了9天.其间,乙车间在加工2天后停止加工,引入新设备后继续加工,直到与甲车间同时完成这项任务为止,设甲、乙两个车间各自加工零件总数y(单位:件)与加时间x(单位:天)的对应关系如图1所示,由工厂统计数据可知,甲车间与乙车间加工零件总数之差z(单位:件)与加时间x(单位:天)的对应关系如图2所示,请根据图象提供的信息回答:图中的值是__________;第_________天时,甲、乙两个车间加工零件总数相同.22.(10分)如图,一次函数y=kx+b的图象经过(2,4)、(0,2)两点,与x轴相交于点C.求:(1)此一次函数的解析式;(2)△AOC的面积.23.(10分)学完第五章《平面直角坐标系》和第六章《一次函数》后,老师布置了这样一道思考题:已知:如图,在长方形ABCD中,BC=4,AB=2,点E为AD的中点,BD和CE相交于点P.求△BPC的面积.小明同学应用所学知识,顺利地解决了此题,他的思路是这样的:建立适合的“平面直角坐标系”,写出图中一些点的坐标.根据“一次函数”的知识求出点的坐标,从而可求得△BPC的面积.请你按照小明的思路解决这道思考题.24.(10分)如图,在△ABC中,AD平分∠BAC,且BD=CD,DE⊥AB于点E,DF⊥AC于点F.(1)求证:AB=AC;(2)若∠BAC=60°,BC=6,求△ABC的面积.25.(12分)如图,在边长12的正方形ABCD中,点E是CD的中点,点F在边AD上,且AF=3DF,连接BE,BF,EF,请判断△BEF的形状,并说明理由.26.某部队将在指定山区进行军事演习,为了使道路便于部队重型车辆通过,部队工兵连接到抢修一段长3600米道路的任务,按原计划完成总任务的后,为了让道路尽快投入使用,工兵连将工作效率提高了50%,一共用了10小时完成任务,求原计划每小时抢修道路多少米?

参考答案一、选择题(每题4分,共48分)1、D【解析】

根据方差反映数据的波动情况即可解答.【详解】由于方差反映数据的波动情况,所以比较两人成绩稳定程度的数据是方差.故选D.【点睛】本题主要考查了统计的有关知识,主要包括平均数、中位数、众数、方差.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.2、B【解析】

根据题意画出图形,根据三角形的面积公式即可得出S关于y的函数关系式,由函数关系式及点P在第一象限即可得出x的值,即可解答【详解】△OPA的面积为S==12,所以,y=4,由x+y=8,得x=4,所以,P(4,4),选B。【点睛】此题考查坐标与图形性质,解题关键在于得出x的值3、B【解析】试题分析:根据不等式2x<kx+b<0体现的几何意义得到:直线y=kx+b上,点在点A与点B之间的横坐标的范围.解:不等式2x<kx+b<0体现的几何意义就是直线y=kx+b上,位于直线y=2x上方,x轴下方的那部分点,显然,这些点在点A与点B之间.故选B.4、B【解析】根据平均数是指在一组数据中所有数据之和再除以数据的个数,它是反映数据集中趋势的一项指标.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数,中位数代表了这组数据值大小的“中点”,不易受极端值影响,但不能充分利用所有数据的信息,对每一项进行分析即可:A、1.65米是该班学生身高的平均水平,正确;B、因为小华的身高是1.66米,不是中位数,所以班上比小华高的学生人数不会超过25人错误;C、这组身高数据的中位数不一定是1.65米,正确;D、这组身高数据的众数不一定是1.65米,正确.故选B.5、C【解析】

试题分析:由于开始以正常速度匀速行驶,接着停下修车,后来加快速度匀驶,所以开始行驶路S是均匀减小的,接着不变,后来速度加快,所以S变化也加快变小,由此即可作出选择.解:因为开始以正常速度匀速行驶,所以s随着t的增加而增加,随后由于故障修车,此时s不发生改变,再之后加快速度匀驶,s随着t的增加而增加,综上可得S先缓慢增加,再不变,再加速增加.故选:C.考点:函数的图象.6、A【解析】

根据众数的定义即众数是一组数据中出现次数最多的数和中位数的定义即中位数是将一组数据从小到大重新排列后,最中间的那个数即可求出答案.【详解】数据2,3,5,5,4中,5出现了2次,出现的次数最多,则众数是5;按大小顺序排列为5,5,4,3,2,最中间的数是4,则中位数是4;故选A.【点睛】此题考查了众数和中位数,掌握众数和中位数的定义是解题的关键,众数是一组数据中出现次数最多的数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).7、C【解析】

把道路进行平移,可得草坪面积=长为31﹣x,宽为10﹣x的面积,把相关数值代入即可求解.【详解】解:把道路进行平移,可得草坪面积为一个矩形,长为31﹣x,宽为10﹣x,∴可列方程为:(31﹣x)(10﹣x)=2.故选:C.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,是正确列出一元二次方程的关键.8、D【解析】

根据矩形的性质对角线互相平分可知O1是AC与DB的中点,根据等底同高得到S△ABO1=S矩形,又ABC1O1为平行四边形,根据平行四边形的性质对角线互相平分,得到O1O2=BO2,所以S△ABO2=S矩形,…,以此类推得到S△ABO5=S矩形,而S△ABO5等于平行四边形ABC5O5的面积的一半,根据矩形的面积即可求出平行四边形ABC5O5和平行四边形AB∁nOn的面积.【详解】解:∵设平行四边形ABC1O1的面积为S1,∴S△ABO1=S1,又∵S△ABO1=S矩形,∴S1=S矩形=5=;设ABC2O2为平行四边形为S2,∴S△ABO2=S2,又∵S△ABO2=S矩形,∴S2=S矩形=;,…,∴平行四边形AB∁nOn的面积为(cm2).故选D.【点睛】此题考查了矩形及平行四边形的性质,要求学生审清题意,找出面积之间的关系,归纳总结出一般性的结论.考查了学生观察、猜想、验证及归纳总结的能力.9、C【解析】

根据分式有意义的条件即可解答.【详解】∵分式有意义,∴x+4≠0,∴.故选C.【点睛】本题考查了分式有意义的条件,熟知分式有意义的条件(分式有意义,分母不为0)是解决问题的关键.10、B【解析】

根据众数的意义,找出出现次数最多的数,根据中位数的意义,排序后找出处在中间位置的数即可.【详解】解:这组数据从小到大排列是:2,2,2,3,4,5,6,出现次数最多的数是2,故众数是2;处在中间位置的数,即处于第四位的数是中位数,是3,故选:.【点睛】考查众数、中位数的意义,即从出现次数最多的数、和排序后处于之中间位置的数.11、D【解析】

方差越大,则射击成绩的离散程度越大,稳定性也越小;方差越小,则射击成绩的离散程度越小,稳定性越好,由此即可判断.【详解】解:∵S甲2=0.54,S乙2=0.61,S丙2=0.60,S丁2=0.50,

∴丁的方差最小,成绩最稳定,

故选:D.【点睛】本题考查方差的意义,记住方差越小数据越稳定.12、C【解析】

分别利用平行四边形、矩形、菱形及正方形的判定方法对四个选项逐项判断即可.【详解】A.利用平行四边形的判定定理可知两组对边分别相等的四边形是平行四边形正确;B.利用矩形的判定定理可知有一个角是直角的平行四边形是矩形正确;C.根据四条边相等的四边形是菱形可知本选项错误;D.根据正方形的判定定理可知对角线互相垂直的矩形是正方形正确,故选C.【点睛】此题考查正方形的判定,平行四边形的判定,矩形的判定,解题关键在于掌握各性质定义.二、填空题(每题4分,共24分)13、【解析】

去分母得,根据有增根即可求出k的值.【详解】去分母得,,当时,为增根,故答案为:1.【点睛】本题考查了分式方程的问题,掌握解分式方程的方法是解题的关键.14、14【解析】

根据菱形的性质,先求另一条对角线的长度,再运用菱形的面积等于对角线乘积的一半求解.【详解】解:如图,在菱形ABCD中,BD=2.∵菱形的周长为10,BD=2,∴AB=5,BO=3,∴AC=3.∴面积故答案为14.【点睛】此题考查了菱形的性质及面积求法,难度不大.15、x=﹣3【解析】

根据分式的方程的解法即可求出答案.【详解】解:,∴,∴(3﹣x)(1+x)=x(1﹣x),解得:x=﹣3,故答案为:x=﹣3【点睛】本题考查分式方程,解题的关键是熟练运用分式的方程的解法,本题属于基础题型.16、.【解析】根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须.17、.【解析】试题解析:连接BB′交AE于点O,如图所示:由折线法及点E是BC的中点,∴EB=EB′=EC,∴∠EBB′=∠EB′B,∠ECB′=∠EB′C;又∵△BB'C三内角之和为180°,∴∠BB'C=90°;∵点B′是点B关于直线AE的对称点,∴AE垂直平分BB′;在Rt△AOB和Rt△BOE中,BO2=AB2-AO2=BE2-(AE-AO)2将AB=4,BE=3,AE==5代入,得AO=cm;∴BO=,∴BB′=2BO=cm,∴在Rt△BB'C中,B′C=cm.考点:翻折变换(折叠问题).18、【解析】如图,延长FD到G,使DG=BE;连接CG、EF;∵四边形ABCD为正方形,在△BCE与△DCG中,,∴△BCE≌△DCG(SAS),∴CG=CE,∠DCG=∠BCE,∴∠GCF=45°,在△GCF与△ECF中,,∴△GCF≌△ECF(SAS),∴GF=EF,∵CE=3,CB=6,∴BE=,∴AE=3,设AF=x,则DF=6−x,GF=3+(6−x)=9−x,∴EF=,∴(9−x)²=9+x²,∴x=4,即AF=4,∴GF=5,∴DF=2,∴CF==,故答案为:.点睛:本题考查了全等三角形的判定与性质,勾股定理的知识点,构建三角形,利用方程思想是解答本题的关键.三、解答题(共78分)19、(1)见解析;(2)70°.【解析】

(1)结合中位线的性质证明即可;(2)先根据平行四边形的性质得到∠DEF=∠BAC,再根据题意证明∠DHF=∠BAC,得到∠DEF=∠DHF,计算∠DHF大小即可.【详解】(1)∵D,E,F分别是边AB、BC、CA的中点,∴DE,EF是△ABC的中位线,∴DE∥AF,EF∥AD,∴四边形ADEF是平行四边形.(2)∵四边形ADEF是平行四边形,∴∠DEF=∠BAC,∵D,F分别是AB,CA的中点,AH是边BC上的高,∴DH=AD,FH=AF,∴∠DAH=∠DHA,∠FAH=∠FHA,∵∠DAH+∠FAH=∠BAC,∠DHA+∠FHA=∠DHF,∴∠DHF=∠BAC,∴∠DEF=∠DHF=∠AHF+∠AHD=70°.【点睛】本题主要考查中位线的性质和平行四边形的判定与性质,掌握中位线的性质,证明∠DEF=∠DHF是解答本题的关键.20、(1)t=;(2)y-t2+4t(0<t≤8);(3)t=时,点C在PF的中垂线上.【解析】

(1)根据当EF=PC时,四边形PCFE是平行四边形,列出关于t的等式求解即可;

(2)作EH⊥BC,用t表示出BP、EH即可得△EBP的面积y;

(3)根据PC=CF,列出关于t的等式即可求.【详解】(1)如图1中,∵EF∥PC,∴当EF=PC时,四边形PCFE是平行四边形,∴t=8-2t,∴t=.(2)如图2中,作EH⊥BC于H.在Rt△EBH中,∵BE=8-t,∠B=60°,∴EH=BE•sin60°=(8-t)•,∴y=•BP•EH=•2t•(8-t)=-t2+4t(0<t≤8).(3)如图3中,当点P在BC的延长线上时,PC=CF时,点C在PF的中垂线上.∴2t-8=8-t,∴t=,∴t=时,点C在PF的中垂线上.【点睛】本题考查的知识点是三角形的综合运用,解题关键是作辅助线进行解答.21、7701【解析】

(1)根据题意和函数图象中的数据可以求得m的值;(2)根据题意和函数图象中的数据可以求得甲的速度、乙引入设备前后的速度,乙停工的天数,从而可以求得第几天,甲、乙两个车间加工零件总数相同.【详解】解:(1)由题意可得,m=720+50=770,故答案为:770;(2)由图可得,甲每天加工的零件数为:720÷9=10(个),乙引入新设备前,每天加工的零件数为:10-(40÷2)=60(个),乙停工的天数为:(200-40)÷10=2(天),乙引入新设备后,每天加工的零件数为:(770-60×2)÷(9-2-2)=130(个),设第x天,甲、乙两个车间加工零件总数相同,10x=60×2+130(x-2-2),解得,x=1,即第1天,甲、乙两个车间加工零件总数相同,故答案为:1.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.22、(1)y=x+2;(2)1【解析】

(1)由图可知、两点的坐标,把两点坐标代入一次函数即可求出的值,进而得出结论;(2)由点坐标可求出的长再由点坐标可知的长,利用三角形的面积公式即可得出结论.【详解】解:(1)由图可知、,,解得,故此一次函数的解析式为:;(2)由图可知,,,,,.答:的面积是1.【点睛】此题考查的是待定系数法求一次函数的解析式及一次函数图象上点的坐标特点,先根据一次函数的图象得出、、三点的坐标是解答此题的关键.23、见解析【解析】

解:如图,以为原点,为轴,为轴建立坐标系,∵,,为长方形,∴,,,∵为中点,∴,直线过,,∴的表达式为.设表达式为,将,和,代入得:,解得:,∴表达式为,联立,解得:,∴,.24、(1)见解析;(2)【解析】

(1)由角平分线上的点到角两边的距离相等可得DE=DF,利用HL易证Rt△BDE≌Rt△CDF,从而得到∠B=∠C,然后再用AAS证明△ABD≌△ACD即可得证.(2)由∠BAC=60°和AB=AC可得△ABC为等边三角形,从而得到AB=BC=6,再由勾股定理求出高AD,即可求△ABC的面积.【详解】(1)∵AD平分∠BAC,DE⊥AB,DF⊥AC∴DE=DF,∠BAD=∠CAD在Rt△BDE和

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论