2024年江苏省盐城市中学八年级数学第二学期期末质量跟踪监视试题含解析_第1页
2024年江苏省盐城市中学八年级数学第二学期期末质量跟踪监视试题含解析_第2页
2024年江苏省盐城市中学八年级数学第二学期期末质量跟踪监视试题含解析_第3页
2024年江苏省盐城市中学八年级数学第二学期期末质量跟踪监视试题含解析_第4页
2024年江苏省盐城市中学八年级数学第二学期期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年江苏省盐城市中学八年级数学第二学期期末质量跟踪监视试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.我市某小区实施供暖改造工程,现甲、乙两工程队分别同时开挖两条600米长的管道,所挖管道长度y(米)与挖掘时间x(天)之间的关系如图所示,则下列说法中,正确的个数有(

)个.①甲队每天挖100米;②乙队开挖两天后,每天挖50米;③当x=4时,甲、乙两队所挖管道长度相同;④甲队比乙队提前2天完成任务.A.1

B.2

C.3

D.42.若,则下列不等式成立的是()A. B. C. D.3.要使代数式有意义,实数的取值范围是()A. B. C. D.4.如果中不含的一次项,则()A. B. C. D.5.下列四个三角形,与左图中的三角形相似的是()A. B. C. D.6.下列图形中,是中心对称图形但不是轴对称图形的是()A.等边三角形 B.平行四边形 C.一次函数图象 D.反比例函数图象7.下列命题的逆命题不成立的是()A.两直线平行,同旁内角互补 B.如果两个实数相等,那么它们的平方相等C.平行四边形的对角线互相平分 D.全等三角形的对应边相等8.一个多边形的内角和比它的外角和的3倍少180°,则这个多边形的边数为()A.5 B.6 C.7 D.89.若△ABC∽△DEF,相似比为4:3,则对应面积的比为()A.4:3 B.3:4 C.16:9 D.9:1610.如图,Rt△ABC中,∠C=90°,AB=10,BC=8,将△ABC折叠,使B点与AC的中点D重合,折痕为EF,则线段BF的长是()A. B.2 C. D.二、填空题(每小题3分,共24分)11.若菱形的两条对角线长分别是6㎝和8㎝,则该菱形的面积是㎝1.12.一次函数y=2x-4的图像与x轴的交点坐标为_______.13.如图所示,小明从坡角为30°的斜坡的山底(A)到山顶(B)共走了200米,则山坡的高度BC为米.14.对于实数c,d,min{c,d}表示c,d两数中较小的数,如min{3,﹣1}=﹣1.若关于x的函数y=min{2x2,a(x﹣t)2}(x≠0)的图象关于直线x=3对称,则a的取值范围是_____,对应的t值是______.15.已知中,,则的度数是_______度.16.函数y=kx的图象经过点(1,3),则实数k=_____.17.如图,在等腰梯形ABCD中,AD∥BC,AB=CD.点P为底边BC的延长线上任意一点,PE⊥AB于E,PF⊥DC于F,BM⊥DC于M.请你探究线段PE、PF、BM之间的数量关系:______.18.分解因式:x3-9x三、解答题(共66分)19.(10分)如图,直线y=-12x+b与x轴,y轴分别交于点A,点B,与函数y=kx(1)直接写出k,b的值和不等式0⩽-1(2)在x轴上有一点P,过点P作x轴的垂线,分别交函数y=-12x+b和y=kx的图象于点C,点D.若2CD=OB20.(6分)已知如图,抛物线与轴交于点A和点C(2,0),与轴交于点D,将△DOC绕点O逆时针旋转90°后,点D恰好与点A重合,点C与点B重合.(1)直接写出点A和点B的坐标;(2)求和的值;(3)已知点E是该抛物线的顶点,求证:AB⊥EB.21.(6分)某校为奖励学习之星,准备在某商店购买A、B两种文具作为奖品,已知一件A种文具的价格比一件B种文具的价格便宜5元,且用600元买A种文具的件数是用400元买B种文具的件数的2倍.(1)求一件A种文具的价格;(2)根据需要,该校准备在该商店购买A、B两种文具共150件.①求购买A、B两种文具所需经费W与购买A种文具的件数a之间的函数关系式;②若购买A种文具的件数不多于B种文具件数的2倍,且计划经费不超过2750元,求有几种购买方案,并找出经费最少的方案,及最少需要多少元?22.(8分)如图1,正方形ABCD中,AB=4cm,点P从点D出发沿DA向点A匀速运动,速度是1cm/s,同时,点Q从点A出发沿AB方向,向点B匀速运动,速度是2cm/s,连接PQ、CP、CQ,设运动时间为t(s)(0<t<2)(1)是否存在某一时刻t,使得PQ∥BD?若存在,求出t值;若不存在,说明理由(2)设△PQC的面积为s(cm2),求s与t之间的函数关系式;(3)如图2,连接AC,与线段PQ相交于点M,是否存在某一时刻t,使S△QCM:S△PCM=3:5?若存在,求出t值;若不存在,说明理由.23.(8分)如图,在四边形中,,是的中点,,,于点.(1)求证:四边形是菱形;(2)若,,求的长.24.(8分)如果一个多位自然数的任意两个相邻数位上,右边数位上的数总比左边数位上的数大1,则我们称这样的自然数叫“美数”,例如:123,3456,67,…都是“美数”.(1)若某个三位“美数”恰好等于其个位的76倍,这个“美数”为.(2)证明:任意一个四位“美数”减去任意一个两位“美数”之差再减去1得到的结果定能被11整除;(3)如果一个多位自然数的任意两个相邻数位上,左边数位上的数总比右边数位上的数大1,则我们称这样的自然数叫“妙数”,若任意一个十位为为整数)的两位“妙数”和任意一个个位为为整数)的两位“美数”之和为55,则称两位数为“美妙数”,并把这个“美妙数”记为,则求的最大值.25.(10分)2019年中国北京世界园艺博览会于4月28日晚在北京·延庆隆重开幕,本届世园会主题为“绿色生活、美丽家园”.自开园以来,世园会迎来了世界各国游客进园参观.据统计,仅五一小长假前来世园会打卡的游客就总计约32.7万人次.其中中国馆也是非常受欢迎的场馆.据调查,中国馆5月1日游览人数约为4万人,5月3日游览人数约为9万人,若5月1日到5月3日游客人数的日增长率相同,求中国馆这两天游客人数的日平均增长率是多少?26.(10分)李大伯响应国家保就业保民生政策合法摆摊,他预测某品牌新开发的小玩具能够畅销,就用3000元购进了一批小玩具,上市后很快脱销,他又用8000元购进第二批小玩具,所购数量是第一批购进数量的2倍,但每个进价贵了5元.(1)求李大伯第一次购进的小玩具有多少个?(2)如果这两批小玩具的售价相同,且全部售完后总利润率不低于20%,那么每个小玩具售价至少是多少元?

参考答案一、选择题(每小题3分,共30分)1、D【解析】

从图象可以看出甲队完成工程的时间不到6天,故工作效率为100米,乙队挖2天后还剩300米,4天完成了200米,故每天是50米,当x=4时,甲队完成400米,乙队完成400米,甲队完成所用时间是6天,乙队是8天,通过以上的计算就可以得出结论.【详解】由图象,得①600÷6=100米/天,故①正确;②(500−300)÷4=50米/天,故②正确;③甲队4天完成的工作量是:100×4=400米,乙队4天完成的工作量是:300+2×50=400米,∵400=400,∴当x=4时,甲、乙两队所挖管道长度相同,故③正确;④由图象得甲队完成600米的时间是6天,乙队完成600米的时间是:2+300÷50=8天,∵8−6=2天,∴甲队比乙队提前2天完成任务,故④正确;故答案为①②③④2、A【解析】

根据不等式的基本性质逐一判断即可.【详解】A.将已知不等式的两边同时加上5,得,故本选项符合题意;B.将已知不等式的两边同时乘,得,故本选项不符合题意;C.将已知不等式的两边同时乘,得,故本选项不符合题意;D.不能得出,故本选项不符合题意.故选A.【点睛】此题考查的是不等式的变形,掌握不等式的基本性质是解决此题的关键.3、B【解析】

根据二次根式的双重非负性即可求得.【详解】代数式有意义,二次根号下被开方数≥0,故∴故选B.【点睛】本题考查了二次根式有意义的条件,难度低,属于基础题,熟练掌握二次根式的双重非负性是解题关键.4、A【解析】

利用多项式乘多项式法则计算,根据结果不含x的一次项求出m的值即可.【详解】解:原式=x2+(m-5)x-5m,

由结果中不含x的一次项,得到m-5=0,

解得:m=5,

故选:A【点睛】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.5、B【解析】

设单位正方形的边长为1,求出各边的长,再根据各选项的边长是否成比例关系即可判断.【详解】设单位正方形的边长为1,给出的三角形三边长分别为2,4,2.A、三角形三边分别是2,,3,与给出的三角形的各边不成比例,故A选项错误;B、三角形三边,2,,与给出的三角形的各边成比例,故B选项正确;C、三角形三边2,3,,与给出的三角形的各边不成比例,故C选项错误;D、三角形三边,,4,与给出的三角形的各边不成正比例,故D选项错误.故选:B.【点睛】本题主要应用两三角形相似的判定定理,三边对应成比例,做题即可.6、B【解析】

根据中心对称和轴对称图形的定义判定即可.【详解】解:A.等边三角形是轴对称图形,不是中心对称图形;B.平行四边形既不是轴对称图形但是中心对称图形;C.一次函数图象是轴对称图形也是中心对称图形;D.反比例函数图象是轴对称图形也是中心对称图形;故答案为B.【点睛】本题考査了中心对称图形与轴对称图形的概念,轴对称图形的关键是明确轴对称图形和中心对称图形的区别和联系.7、B【解析】

把一个命题的条件和结论互换就得到它的逆命题.分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【详解】选项A,两直线平行,同旁内角互补的逆命题是同旁内角互补,两直线平行,正确,成立;选项B,如果两个实数相等,那么它们的平方相等的逆命题是平方相等的两个数相等,错误,不成立,如(﹣3)2=32,但﹣3≠3;选项C,平行四边形的对角线互相平分的逆命题是对角线互相平分的四边形是平行四边形,正确,成立;选项D,全等三角形的对应边相等的逆命题是对应边相等的三角形全等,正确,成立;故选B.【点睛】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.8、C【解析】

解答本题的关键是记住多边形内角和公式为(n-2)×180°,任何多边形的外角和是360度.外角和与多边形的边数无关.【详解】多边形的内角和可以表示成(n-2)•180°,外角和是固定的360°,从而可根据内角和比他的外角和的3倍少180°列方程求解.

设所求n边形边数为n,

则(n-2)•180°=360°×3-180°,

解得n=7,

故选C.【点睛】本题主要考查了多边形的内角和与外角和,解答本题的关键是记住多边形内角和公式为(n-2)×180°.9、C【解析】

直接利用相似三角形的性质求解.【详解】解:∵,相似比为∴它们的面积的比为故选:C【点睛】本题考查了相似三角形的性质---相似三角形面积之比等于相似比的平方,属基础题,准确利用性质进行计算即可.10、D【解析】

根据题意可得:,在中,根据勾股定理可列出方程,解方程可得BF的长.【详解】解:,D是AC中点折叠设在中,故选D.【点睛】本题考查了翻折问题,勾股定理的运用,关键是通过勾股定理列出方程.二、填空题(每小题3分,共24分)11、14【解析】已知对角线的长度,根据菱形的面积计算公式即可计算菱形的面积.解:根据对角线的长可以求得菱形的面积,根据S=ab=×6×8=14cm1,故答案为14.12、(2,1)【解析】

把y=1代入y=2x+4求出x的值,即可得出答案.【详解】把y=1代入y=2x-4得:1=2x-4,

x=2,

即一次函数y=2x-4与x轴的交点坐标是(2,1).

故答案是:(2,1).【点睛】考查了一次函数图象上点的坐标特征,注意:一次函数与x轴的交点的纵坐标是1.13、1【解析】试题分析:直接利用坡角的定义以及结合直角三角中30°所对的边与斜边的关系得出答案.解:由题意可得:AB=200m,∠A=30°,则BC=AB=1(m).故答案为:1.14、a=2或a<06或2【解析】

可令y1=2x2,y2=a(x-t)2可分两种情况:①当y1与y2关于x=2对称时,可求出相应的a值为2,t值为6;②由于y1=2x2恒大于零,此时若y2恒小于零时,a<0,可得y2对称轴为x=2,即可求出相应的t值.【详解】解:设y1=2x2,y2=a(x﹣t)2①当y1与y2关于x=2对称时,可得a=2,t=6②在y=min{y1,y2}(x≠0)中,y1与y2没重合部分,即无论x为何值,y=y2即y2恒小于等于y1,那么由于y对x=2对称,也即y2对于x=2对称,得a<0,t=2.综上所述,a=2或a<0,对应的t值为6或2故答案为:a=2或a<0,6或2【点睛】本题考查的是二次函数的图象与几何变换,先根据题意求出a的值是解答此题的关键.15、100【解析】

根据平行四边形对角相等的性质,即可得解.【详解】∵中,,∴故答案为100.【点睛】此题主要考查平行四边形的性质,熟练掌握,即可解题.16、3【解析】试题分析:直接把点(1,3)代入y=kx,然后求出k即可.解:把点(1,3)代入y=kx,解得:k=3,故答案为3【点评】本题考查了待定系数法求正比例函数解析式:设正比例函数解析式为y=kx(k≠0),然后把正比例函数图象上一个点的坐标代入求出k即可.17、PE-PF=BM.【解析】

过点B作BH∥CD,交PF的延长线于点H,易证四边形BMFH是平行四边形,于是有FH=BM,再用AAS证明△PBE≌△PBH,可得PH=PE,继而得到结论.【详解】解:PE-PF=BM.理由如下:过点B作BH∥CD,交PF的延长线于点H,如图∴∠PBH=∠DCB,∵PF⊥CD,BM⊥CD,∴BM∥FH,PH⊥BH,∴四边形BMFH是平行四边形,∠H=90°,∴FH=BM,∵等腰梯形ABCD中,AD∥BC,AB=DC,∴∠ABC=∠DCB,∴∠ABC=∠PBH,∵PE⊥AB,∴∠PEB=∠H=90°,又PB为公共边,∴△PBE≌△PBH(AAS),∴PH=PE,∴PE=PF+FH=PF+BM.即PE-PF=BM.【点睛】本题考查了等腰梯形的性质、平行四边形的判定与性质和全等三角形的判定与性质,解题的关键是正确添加辅助线,构造所需的平行四边形和全等三角形.18、x【解析】试题分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式。因此,先提取公因式x后继续应用平方差公式分解即可:x2三、解答题(共66分)19、(1)不等式0⩽-12x+b⩽kx的解集为1⩽x⩽5;(2)点P的坐标为P(32,0)【解析】

(1)把M点的坐标分别代入y=kx和y=-12x+b可求出k、b的值,再确定A点坐标,然后利用函数图象写出不等式0⩽-12x+b⩽kx的解集;(2)先确定B点坐标得到OB的长,设P(m,0),则C(m,-12m+52),D(【详解】(1)把M(1,2)代入y=kx得k=2;把M(1,2)代入y=-12x+b得2=-当y=0时,-12x+52所以不等式0⩽-12x+b⩽kx(2)当x=0时,y=-12∴OB=5设P(m,0),则C(m,-12m+∵2CD=OB,∴2-解得m=32或∴点P的坐标为P(32,0)或(1【点睛】本题考查了待定系数法求一次函数解析式,一次函数与一元一次不等式,掌握待定系数法求一次函数解析式,一次函数与一元一次不等式是解题的关键.20、(1)A(-6,0)、B(0,2);(2),;(3)E(-2,8).【解析】试题分析:(1)由题意易得点D的坐标为(0,6),结合AOB是由△DOC绕点O逆时针旋转90°得到的,即可得到OA=6,OB=OC=2,由此即可得到点A和点B的坐标;(2)将点A和点C的坐标代入列出关于的二元一次方程组,解方程组即可求得的值;(3)由(2)中所得的值可得二次函数的解析式,把解析式配方即可求得点E的坐标,结合点A和点B的坐标即可求得AE2、AB2、BE2的值,这样由勾股定理的逆定理即可得到∠ABE=90°,从而可得AB⊥BE.试题解析:(1)∵在中,当时,,∴点D的坐标为(0,6),∵△AOB是由△DOC绕点O逆时针旋转90°得到的,∴OA=OD=6,OB=OC=2,∴点A的坐标为(-6,0),点B的坐标为(0,2);(2)∵点A(-6,0)和点C(2,0)在的图象上,∴,解得:;(3)如图,连接AE,由(2)可知,∴,∴点E的坐标为(-2,8),∵点A(-6,0),点B(0,2),∴AE2=,AB2=,BE2=,∴AE2=AB2+BE2,∴∠ABE=90°,∴AB⊥EB.21、(1)一件A种文具的价格为15元;(2)①W=-5a+3000;②有51种购买方案,经费最少的方案购买A种玩具100件,B种玩具50件,最低费用为2500元.【解析】

(1)根据题意可以得到相应的分式方程,从而可以求得一件A种文具的价格;(2)①根据题意,可以直接写出W与a之间的函数关系式;②根据题意可以求得a的取值范围,再根据W与a的函数关系式,可以得到W的最小值,本题得以解决.【详解】(1)设一件A种文具的价格为x元,则一件B种玩具的价格为(x+5)元,解得,x=15,经检验,x=15是原分式方程的解,答:一件A种文具的价格为15元;(2)①由题意可得,W=15a+(15+5)(150-a)=-5a+3000,即购买A、B两种文具所需经费W与购买A种文具的件数a之间的函数关系式是W=-5a+3000;②∵购买A种文具的件数不多于B种文具件数的2倍,且计划经费不超过2750元,∴,解得,50≤a≤100,∵a为整数,∴共有51种购买方案,∵W=-5a+3000,∴当a=100时,W取得最小值,此时W=2500,150-a=100,答:有51种购买方案,经费最少的方案购买A种玩具100件,B种玩具50件,最低费用为2500元.【点睛】本题考查一次函数的应用、分式方程的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质、不等式的性质和分式方程的知识解答,注意分式方程要检验.22、(1);(2)S=t2﹣2t+8(0<t<2);(3).【解析】

由题意可得:由运动知,DP=t,AQ=2t,得出AP=4-t,BQ=4-2t,(1)判断出AQ=AP,得出2t=4-t,即可;(2)直接利用面积的和差即可得出结论;(3)先判断=,再得到,从而得出解方程即可得出结论.【详解】解:∵四边形ABCD是正方形,∴AB=BC=CD=AD=4,由运动知,DP=t,AQ=2t,∴AP=4﹣t,BQ=4﹣2t,(1)连接BD,如图1,∵AB=AD,∴∠ABD=∠ADB,∵PQ∥BD,∴∠ABD=∠AQP,∠APQ=∠ADB,∴∠APQ=∠AQP,∴AQ=AP,∴2t=4﹣t,∴t=;(2)S=S正方形ABCD﹣S△APQ﹣S△BCQ﹣S△CDP=AB2﹣AQ×AP﹣BQ×BC﹣DP×CD=16﹣×2t×(4﹣t)﹣×(4﹣2t)×4﹣t×4=16+t2﹣4t﹣8+4t﹣2t=t2﹣2t+8(0<t<2);(3)如图2,过点C作CN⊥PQ于N,∴S△MCQ=MQ×CN,S△MCP=MP×CN,∵S△QCM:S△PCM=3:5,∴=,∴,过点M作MG⊥AB于G,MH⊥AD于H,∵点M是正方形ABCD的对角线AC上的一点,∴MG=MH,∴S△AMQ=AQ×MG,S△APM=AP×MH,∴∴∴t=.【点睛】四边形综合题,主要考查了正方形的性质,平行线的性质,同高的两三角形的面积比是底的比,方程思想,解本题的关键是用方程的思想解决问题.23、(1)详见解析;(2)【解析】

(1)由,可知四边形是平行四边形,由直角三角形中斜边的中线等于底边的一半可知,依据菱形的判定即可求证.(2)过A作于点H,AH为菱形的高,菱形的面积可用两种方式表示出来,而CD=CE,所以EF=AH,因而只要求出三角形ABC面积的两种求法确定AH即可.【详解】证明:(1)∵,,∴四边形是平行四边形.∵,E是的中点,∴=AD.∴四边形是菱形.(2)过A作于点H,∵,,,∴.∵,∴.∵点E是的中点,,四边形是菱形,∴.∵,∴.【点睛】本题主要考查了菱形的判定及菱形中的面积问题,能够熟练掌握菱形的判定定理、灵活的表示菱形、三角形的面积是解题的关键.24、(1)456

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论