黑龙江省七台河市勃利县2024年八年级下册数学期末调研模拟试题含解析_第1页
黑龙江省七台河市勃利县2024年八年级下册数学期末调研模拟试题含解析_第2页
黑龙江省七台河市勃利县2024年八年级下册数学期末调研模拟试题含解析_第3页
黑龙江省七台河市勃利县2024年八年级下册数学期末调研模拟试题含解析_第4页
黑龙江省七台河市勃利县2024年八年级下册数学期末调研模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

黑龙江省七台河市勃利县2024年八年级下册数学期末调研模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.点向右平移2个单位得到对应点,则点的坐标是()A. B. C. D.2.下列二次根式是最简二次根式的是()A.B.C.D.3.某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x,则可列方程为()A.80(1+x)2=100 B.100(1﹣x)2=80 C.80(1+2x)=100 D.80(1+x2)=1004.如图,四边形ABCD的对角线AC,BD相交于点O,且AB∥CD,添加下列条件后仍不能判断四边形ABCD是平行四边形的是()A.AB=CD B.AD∥BC C.OA=OC D.AD=BC5.若一次函数的函数图像不经过第()象限.A.一 B.二 C.三 D.四6.下列方程中是一元二次方程的是()A.2x+1=0 B.x2+y=1 C.x2+2=0 D.7.若分式(x≠0,y≠0)中x,y同时扩大3倍,则分式的值()A.扩大3倍 B.缩小3倍 C.改变 D.不改变8.化简:的结果是()A. B. C.﹣ D.﹣9.某学校拟建一间矩形活动室,一面靠墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1m宽的门,已知计划中的材料可建墙体(不包括门)总长为27m,建成后的活动室面积为75m2,求矩形活动室的长和宽,若设矩形宽为x,根据题意可列方程为()A.x(27﹣3x)=75 B.x(3x﹣27)=75C.x(30﹣3x)=75 D.x(3x﹣30)=7510.若点P(1-m,-3)在第三象限,则m的取值范围是()A.m<1 B.m<0 C.m>0 D.m>1二、填空题(每小题3分,共24分)11.如图,矩形ABCD的对角线AC与BD相交点O,AC=8,P、Q分别为AO、AD的中点,则PQ的长度为________.12.将一张A3纸对折并沿折痕裁开,得到2张A4纸.已知A3纸和A4纸是两个相似的矩形,则矩形的短边与长边的比为______.13.一个矩形的长比宽多1cm,面积是,则矩形的长为___________14.已知函数,当时,函数值的取值范围是_____________15.如图,延长矩形ABCD的边BC至点E,使CE=BD,连结AE,如果∠ADB=30°,则∠E=_____度.16.已知反比例函数y=的图象位于第一、第三象限,则k的取值范围是_____.17.用换元法解方程时,如果设,那么所得到的关于的整式方程为_____________18.如图,在中,,,,则__________.三、解答题(共66分)19.(10分)如图所示,ΔABC的顶点在8×8的网格中的格点上.(1)画出ΔABC绕点A逆时针旋转90°得到的ΔA(2)在图中确定格点D,并画出一个以A、B、C、D为顶点的四边形,使其为中心对称图形.20.(6分)某学校计划在总费用2300元的限额内,租用客车送234名学生和6名教师集体外出活动,每辆客车上至少要有1名教师.现有甲、乙两种大客车,它们的载客量和租金如下表所示.甲种客车乙种客车载客量/(人/辆)4530租金/(元/辆)400280(1)共需租多少辆客车?(2)请给出最节省费用的租车方案.21.(6分)如图,四边形ABCD是平行四边形,点E在BC上,点F在AD上,BE=DF,求证:AE=CF.22.(8分)下表是厦门市某品牌专卖店全体员工9月8日的销售量统计资料.销售量/件78101115人数13341(1)写出该专卖店全体员工9月8日销售量的众数;(2)求该专卖店全体员工9月8日的平均销售量.23.(8分)我们用a表示不大于a的最大整数,用a表示大于a的最小整数.例如:2.52,33,2.53;<2.5>3,<4>5,<1.5>1.解决下列问题:(1)4.5,<3.5>.(2)若x2,则<x>的取值范围是;若<y>1,则y的取值范围是.(3)已知x,y满足方程组;求x,y的取值范围.24.(8分)如图,矩形的两条边、分别在轴和轴上,已知点坐标为(4,–3).把矩形沿直线折叠,使点落在点处,直线与、、的交点分别为、、.(1)线段;(2)求点坐标及折痕的长;(3)若点在轴上,在平面内是否存在点,使以、、、为顶点的四边形是菱形?若存在,则请求出点的坐标;若不存在,请说明理由;25.(10分)如图,正比例函数y=2x的图象与一次函数y=kx+b的图象交于点A(m,2),一次函数图象经过点B(﹣2,﹣1),与y轴的交点为C,与x轴的交点为D.(1)求一次函数解析式;(2)求C点的坐标;(3)求△AOD的面积.26.(10分)城市到城市的铁路里程是300千米.若旅客从城市到城市可选择高铁和动车两种交通工具,高铁速度是动车速度的1.5倍,时间相差0.5小时,求高铁的速度.

参考答案一、选择题(每小题3分,共30分)1、A【解析】

根据平移的坐标变化规律,将A的横坐标+2即可得到A′的坐标.【详解】∵点A(1,2)向右平移2个单位得到对应点,∴点的坐标为(1+2,2),即(3,2).故选A.【点睛】本题考查图形的平移变换,在平面直角坐标系中,图形的平移与图形上某点的平移规律相同.2、C【解析】A选项的被开方数中含有分母;B、D选项的被开方数中含有未开尽方的因数;因此这三个选项都不符合最简二次根式的要求.所以本题的答案应该是C.解:A、=;B、=2;D、=2;因此这三个选项都不是最简二次根式,故选C.3、A【解析】

利用增长后的量=增长前的量×(1+增长率),设平均每次增长的百分率为x,根据“从80吨增加到100吨”,即可得出方程.【详解】由题意知,蔬菜产量的年平均增长率为x,根据2016年蔬菜产量为80吨,则2017年蔬菜产量为80(1+x)吨,2018年蔬菜产量为80(1+x)(1+x)吨,预计2018年蔬菜产量达到100吨,即:80(1+x)2=100,故选A.【点睛】本题考查了一元二次方程的应用(增长率问题).解题的关键在于理清题目的含义,找到2017年和2018年的产量的代数式,根据条件找准等量关系式,列出方程.4、D【解析】

根据平行四边形的判定定理逐个判断即可;1、两组对边分别平行的四边形是平行四边形;2、两组对边分别相等的四边形是平行四边形;3、对角线互相平分的四边形是平行四边形;4、一组对边平行且相等的四边形是平行四边形;5、两组对角分别相等的四边形是平行四边形.【详解】A、由“一组对边平行且相等的四边形是平行四边形”可得出四边形ABCD是平行四边形;B、由“两组对边分别平行的四边形是平行四边形”可得出四边形ABCD是平行四边形;C、由AB∥CD可得出∠BAO=∠DCO、∠ABO=∠CDO,结合OA=OC可证出△ABO≌△CDO(AAS),根据全等三角形的性质可得出AB=CD,由“一组对边平行且相等的四边形是平行四边形”可得出四边形ABCD是平行四边形;D、由AB∥CD、AD=BC无法证出四边形ABCD是平行四边形.故选D.【点评】本题考查了平行四边形的判定以及全等三角形的判定与性质,逐一分析四个选项给定条件能否证明四边形ABCD是平行四边形是解题的关键.5、D【解析】

根据k=5>0,函数图像经过一、三象限,b=1>0,函数图像与y轴的正半轴相交,即可进行判断.【详解】根据k=5>0,函数图像经过第一、三象限,b=1>0,函数图像与y轴的正半轴相交,则一次函数的函数图像过第一、二、三象限,不过第四象限,故选D.【点睛】本题主要考查了一次函数图像的性质,熟练掌握一次函数图像与系数的关系是解决本题的关键.6、C【解析】

本题根据一元二次方程的定义求解.一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为1.由这两个条件得到相应的关系式,再求解即可.【详解】A、该方程是一元一次方程,故本选项错误.B、该方程是二元二次方程,故本选项错误.C、该方程是一元二次方程,故本选项正确.D、该方程分式方程,故本选项错误.故选C.【点睛】本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=1(且a≠1).7、D【解析】

可将式中的x,y都用3x,3y来表示,再将化简后的式子与原式对比,即可得出答案.【详解】将原式中的x,y分别用3x,3y表示.故选D.【点睛】考查的是对分式的性质的理解,分式中元素扩大或缩小N倍,只要将原数乘以或除以N,再代入原式求解,是此类题目的常见解法.8、D【解析】

根据二次根式的性质由题意可知,我们在变形时要注意原式的结果应该是个负数,然后根据二次根式的性质化简而得出结果.【详解】解:原式故选:.【点睛】本题考查了二次根式的性质与二次根式的化简,关键要把握住二次根式成立的条件.9、C【解析】

设矩形宽为xm,根据可建墙体总长可得出矩形的长为(30-3x)m,再根据矩形的面积公式,即可列出关于x的一元二次方程,此题得解【详解】解:设矩形宽为xm,则矩形的长为(30﹣3x)m,根据题意得:x(30﹣3x)=1.故选:C.【点睛】本题考查的是一元二次方程,熟练掌握一元二次方程是解题的关键.10、D【解析】

根据第三象限内点的横坐标是负数列不等式求解即可.【详解】解:∵点P(1−m,−3)在第三象限,∴1−m<0,解得m>1.故选D.【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).二、填空题(每小题3分,共24分)11、1【解析】

根据矩形的性质可得AC=BD=8,BO=DO=12BD=4,再根据三角形中位线定理可得PQ=12【详解】∵四边形ABCD是矩形,∴AC=BD=8,BO=DO=12BD∴OD=12BD=4∵点P、Q是AO,AD的中点,∴PQ是△AOD的中位线,∴PQ=12DO=1故答案为:1.【点睛】主要考查了矩形的性质,以及三角形中位线定理,关键是掌握矩形对角线相等且互相平分.12、【解析】

先表示出对折后的矩形的长和宽,再根据相似矩形对应边成比例列出比例式,然后求解.【详解】解:设原来矩形的长为x,宽为y,则对折后的矩形的长为y,宽为,∵得到的两个矩形都和原矩形相似,∴x:y=y:,解得x:y=:1.∴矩形的短边与长边的比为1:,故答案为:.【点睛】本题主要利用相似多边形对应边成比例的性质,需要熟练掌握.13、1【解析】

设宽为xcm,根据矩形的面积=长×宽列出方程解答即可.【详解】解:设宽为xcm,依题意得:

x(x+1)=132,

整理,得

(x+1)(x-11)=0,

解得x1=-1(舍去),x2=11,

则x+1=1.

答:矩形的长是1cm.【点睛】本题考查了根据实际问题列出一元二次方程的知识,列一元二次方程的关键是找到实际问题中的相等关系.14、【解析】

依据k的值得到一次函数的增减性,然后结合自变量的取值范围,得到函数值的取值范围即可.【详解】∵函数y=−3x+7中,k=−3<0,∴y随着x的增大而减小,当x=2时,y=−3×2+7=1,∴当x>2时,y<1,故答案为:y<1.【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.15、1【解析】分析:连接AC,由矩形性质可得∠E=∠DAE、BD=AC=CE,知∠E=∠CAE,而∠ADB=∠CAD=30°,可得∠E度数.详解:连接AC,

∵四边形ABCD是矩形,

∴AD∥BE,AC=BD,且∠ADB=∠CAD=30°,

∴∠E=∠DAE,

又∵BD=CE,

∴CE=CA,

∴∠E=∠CAE,

∵∠CAD=∠CAE+∠DAE,

∴∠E+∠E=30°,即∠E=1°,

故答案为1.点睛:本题主要考查矩形性质,熟练掌握矩形对角线相等且互相平分、对边平行是解题关键.16、.【解析】分析:根据“反比例函数的图象所处象限与的关系”进行解答即可.详解:∵反比例函数的图象在第一、三象限内,∴,解得:.故答案为.点睛:熟记“反比例函数的图象所处象限与的关系:(1)当时,反比例函数的图象在第一、三象限;(2)当时,反比例函数的图象在第二、四象限.”是正确解答本题的关键.17、【解析】

可根据方程特点设,则原方程可化为-y=1,再去分母化为整式方程即可.【详解】设,则原方程可化为:-y=1,去分母,可得1-y2=y,即y2+y-1=1,故答案为:y2+y-1=1.【点睛】本题考查用换元法解分式方程的能力.用换元法解一些复杂的分式方程是比较简单的一种方法,根据方程特点设出相应未知数,再将分式方程可化为整式方程.18、30.【解析】

利用勾股逆定理推出∠C=90°,再利用三角形的面积公式,进行计算即可.【详解】解:∵,,又∵∴∴∠C=90°∴故答案为:30【点睛】本题考查了勾股逆定理以及三角形的面积公式,掌握勾股定理是解题的关键.三、解答题(共66分)19、(1)见解析;(2)见解析.【解析】

(1)由题意可知旋转中心、旋转角、旋转方向,根据旋转的画图方法作图即可;(2)如图有三种情况,构造平行四边形即可.【详解】解:(1)如图ΔAB(2)如图,D、D’、D’’均为所求.【点睛】本题考查了图形的旋转及中心对称图形,熟练掌握作旋转图形的方法及中心对称图形的定义是解题的关键.20、(1)客车总数为6;(1)租4辆甲种客车,1辆乙种客车费用少.【解析】分析:(1)由师生总数为140人,根据“所需租车数=人数÷载客量”算出租载客量最大的客车所需辆数,再结合每辆车上至少要有1名教师,即可得出结论;(1)设租乙种客车x辆,则甲种客车(6﹣x)辆,根据师生总数为140人以及租车总费用不超过1300元,即可得出关于x的一元一次不等式,解不等式即可得出x的值,再设租车的总费用为y元,根据“总费用=租A种客车所需费用+租B种客车所需费用”即可得出y关于x的函数关系式,根据一次函数的性质结合x的值即可解决最值问题.详解:(1)∵(134+6)÷45=5(辆)…15(人),∴保证140名师生都有车坐,汽车总数不能小于6;∵只有6名教师,∴要使每辆汽车上至少要有1名教师,汽车总数不能大于6;综上可知:共需租6辆汽车.(1)设租乙种客车x辆,则甲种客车(6﹣x)辆,由已知得:,解得:≤x≤1.∵x为整数,∴x=1,或x=1.设租车的总费用为y元,则y=180x+400×(6﹣x)=﹣110x+1400.∵﹣110<0,∴当x=1时,y取最小值,最小值为1160元.故租甲种客车4辆、乙种客车1辆时,所需费用最低,最低费用为1160元.点睛:本题考查了一次函数的应用、解一元一次不等式组以及一次函数的性质,解题的关键是:(1)根据数量关系确定租车数;(1)找出y关于x的函数关系式.本题属于中档题,难度不大,解决该题型题目时,根据数量关系找出函数关系式(不等式或不等式组)是关键.21、见解析【解析】

根据平行四边形性质得出AD∥BC,且AD=BC,推出AF∥EC,AF=EC,根据平行四边形的判定推出四边形AECF是平行四边形,即可得出结论.【详解】证明:∵四边形ABCD是平行四边形,∴AD∥BC,且AD=BC,∴AF∥EC,∵BE=DF,∴AF=EC,∴四边形AECF是平行四边形,∴AE=CF.【点睛】本题考查了平行四边形的性质和判定的应用,注意:平行四边形的对边平行且相等,有一组对边平行且相等的四边形是平行四边形.22、(1)该专卖店全体员工9月8日销售量的众数是件;(2)该专卖店全体员工9月8日的平均销售量是件.【解析】

(1)由题意直接根据众数的定义进行分析求解可得;(2)由题意直接根据加权平均数的定义列式并进行计算可得.【详解】解:(1)该专卖店全体员工9月8日销售量的众数是件.答:该专卖店全体员工9月8日销售量的众数是件.(2)(件)答:该专卖店全体员工9月8日的平均销售量是件.【点睛】本题主要考查众数和加权平均数,求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.23、(1)-5,4;(1)1≤x<3,-1≤y<-1;(3)-1≤x<0,1≤y<1

【解析】

(1)根据题目所给信息求解;

(1)根据[1.5]=1,[3]=3,[-1.5]=-3,可得[x]=1中的1≤x<3,根据<a>表示大于a的最小整数,可得<y>=-1中,-1≤y<-1;

(3)先求出[x]和<y>的值,然后求出x和y的取值范围.【详解】解:(1)由题意得:[-4.5]=-5,<y>=4;

故答案为:-5,4;(1)∵[x]=1,

∴x的取值范围是1≤x<3;

∵<y>=-1,

∴y的取值范围是-1≤y<-1;

故答案为:1≤x<3,-1≤y<-1;(3)解方程组,

得:,

∴x的取值范围为-1≤x<0,y的取值范围为1≤y<1.【点睛】本题考查了一元一次不等式的应用与解二元一次方程组,解答本题的关键是读懂题意,根据题目所给的信息进行解答.24、(1);(2);拆痕DE的长为;(3)点Q坐标为【解析】

(1)根据B点的坐标即可求得AC的长度.(2)首先根据已知条件证明,再根据相似比例计算DF、CD的长度即可计算出D点的坐标,再证明,根据EF=DF,即可计算的DE的长度.(3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论