版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省盘锦市第一中学2024年数学八年级下册期末联考模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.如图,已知一次函数的图像与轴,轴分别交于,两点,与反比例函数在第一象限内的图像交于点,且为的中点,则一次函数的解析式为()A. B. C. D.2.一组数据1,2,3,4,5的方差与下列哪组数据的方差相同的是()A.2,4,6,8,10B.10,20,30,40,50C.11,12,13,14,15D.11,22,33,44,553.如图,直线y=kx+b交x轴于点A(﹣2,0),直线y=mx+n交x轴于点B(5,0),这两条直线相交于点C(1,p),则不等式组的解集为()A.x<5 B.x<﹣2 C.﹣2<x<5 D.﹣2<x<14.若,且,则的值可能是()A.0 B.3 C.4 D.55.在Rt△ABC中,BC是斜边,∠B=40°,则∠C=()A.90° B.60° C.50° D.40°6.为了解学生的体能情况,抽取某学校同年级学生进行跳绳测试,将所得数据整理后,画出如图所示的频数分布直方图.已知图中从左到右前三个小组的频率分别为0.1,0.3,0.4,第一小组的频数为5,则第四小组的频数为(
)A.5B.10C.15D.207.用反证法证明命题:“四边形中至少有一个角是钝角或直角”时,首先应该假设这个四边形中()A.有一个角是钝角或直角 B.每一个角都是钝角C.每一个角都是直角 D.每一个角都是锐角8.为了了解我市50000名学生参加初中毕业考试数学成绩情况,从中抽取了1名考生的成绩进行统计.下列说法:①这50000名学生的数学考试成绩的全体是总体;②每个考生是个体;③1名考生是总体的一个样本;④样本容量是1.其中说法正确的有()A.4个 B.3个 C.2个 D.1个9.如图,两张等宽的纸条交叉重叠在一起,重叠的部分为四边形ABCD,若测得A,C之间的距离为12cm,点B,D之间的距离为16m,则线段AB的长为A. B.10cm C.20cm D.12cm10.菱形ABCD的一条对角线长为6,边AB的长是方程x2-7x+12=0的一个根,则菱形ABCD的周长为()A.12 B.14 C.16 D.24二、填空题(每小题3分,共24分)11.如图,在菱形ABCD中,∠A=70º,E,F分别是边AB和BC的中点,EP⊥CD于P,则∠FPC的度数为___________.12.如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到的位置,点B、O分别落在点、处,点在x轴上,再将绕点顺时针旋转到的位置,点在x轴上,将绕点顺时针旋转到的位置,点在x轴上,依次进行下去…若点,,则点的坐标为________.13.如图,在菱形ABCD中,AC、BD交于点O,AC=4,菱形ABCD的面积为4,E为AD的中点,则OE的长为___.14.如图,在中,,,,把绕边上的点顺时针旋转90°得到,交于点,若,则的长是________.15.样本容量为80,共分为六组,前四个组的频数分别为12,13,15,16,第五组的频率是0.1,那么第六组的频率是_____.16.对于三个数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数.例如:M{-1,2,3}=,min{-1,2,3}=-1,如果M{3,2x+1,4x-1}=min{2,-x+3,5x},那么x=_______.17.把抛物线沿轴向上平移1个单位,得到的抛物线解析式为______.18.函数y=的自变量x的取值范围是_____.三、解答题(共66分)19.(10分)如图,在△ABC中,D是BC边的中点,分别过B、C做射线AD的垂线,垂足分别为E、F,连接BF、CE.(1)求证:四边形BECF是平行四边形;(2)我们知道S△ABD=S△ACD,若AF=FD,在不添加辅助线的条件下,直接写出与△ABD、△ACD面积相等的所有三角形.20.(6分)因式分解:.21.(6分)如图,已知中,,的垂直平分线交于,交于,若,,求的长.22.(8分)某化妆品公司每月付给销售人员的工资有两种方案.方案一:没有底薪,只拿销售提成;方案二:底薪加销售提成.设x(件)是销售商品的数量,y(元)是销售人员的月工资.如图所示,y1为方案一的函数图象,y2为方案二的函数图象.已知每件商品的销售提成方案二比方案一少8元.从图中信息解答如下问题(注:销售提成是指从销售每件商品得到的销售额中提取一定数量的费用):(1)求y1的函数解析式;(2)请问方案二中每月付给销售人员的底薪是多少元?(3)小丽应选择哪种销售方案,才能使月工资更多?23.(8分)央视热播节目“朗读者”激发了学生的阅读兴趣.某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:(1)此次共调查了名学生;(2)将条形统计图补充完整;(3)图2中“小说类”所在扇形的圆心角为度;(4)若该校共有学生2500人,估计该校喜欢“社科类”书籍的学生人数.24.(8分)已知一次函数的图像经过点M(-1,3)、N(1,5)。直线MN与坐标轴相交于点A、B两点.(1)求一次函数的解析式.(2)如图,点C与点B关于x轴对称,点D在线段OA上,连结BD,把线段BD顺时针方向旋转90°得到线段DE,作直线CE交x轴于点F,求的值.(3)如图,点P是直线AB上一动点,以OP为边作正方形OPNM,连接ON、PM交于点Q,连BQ,当点P在直线AB上运动时,的值是否会发生变化,若不变,请求出其值;若变化,请说明理由.25.(10分)已知:如图,AB是⊙O的直径,CD是⊙O的弦,且AB⊥CD,垂足为E.(1)求证:BC=BD;(2)若BC=15,AD=20,求AB和CD的长.26.(10分)已知:如图,在菱形ABCD中,对角线AC、BD相交于点O,DE∥AC,AE∥BD.(1)求证:四边形AODE是矩形;(2)若AB=4,∠BCD=120°,求四边形AODE的面积.
参考答案一、选择题(每小题3分,共30分)1、B【解析】
先确定B点坐标,根据A为BC的中点,则点C和点B关于点A中心对称,所以C点的纵坐标为4,再利用反比例函数图象上点的坐标特征可确定C点坐标,然后把C点坐标代入y=kx-4即可得到k的值,即可得到结论.【详解】把x=0代入y=kx−4得y=−4,则B点坐标为(0,−4),∵A为BC的中点,∴C点的纵坐标为4,把y=4代入y=得x=2,∴C点坐标为(2,4),把C(2,4)代入y=kx−4得2k−4=4,解得k=4,∴一次函数的表达式为y=4x−4,故选:B.【点睛】此题考查反比例函数与一次函数的交点问题,解题关键在于求出k值2、C【解析】
根据方差的性质即可解答本题.【详解】C选项中数据是在数据1,2,3,4,5上都加10,故方差保持不变.故选:C.【点睛】本题考查了方差,一般一组数据加上(减去)相同的数后,方差不变.3、B【解析】
根据图象可得,y=kx+b<0,则x<﹣2,y=mx+n>0,则x<5,即可求解.【详解】解:根据图象可得,y=kx+b<0,则x<﹣2,y=mx+n>0,则x<5,∴不等式组的解集为:x<﹣2,故选:B.【点睛】本题考查了一次函数与一元一次不等式,体现了数形结合的思想方法,准确的确定出x的值,是解答本题的关键.4、A【解析】
根据不等式的性质,可得答案.【详解】由不等号的方向改变,得a−3<0,解得a<3,四个选项中满足条件的只有0.故选:A.【点睛】考查不等式的性质3,熟练掌握不等式的性质是解题的关键.5、C【解析】
BC是斜边,则∠A=90°,利用三角形内角和定理即可求出∠C.【详解】∵BC是斜边∴∠A=90°∴∠C=180°-90°-40°=50°故选C.【点睛】本题考查三角形内角和定理,根据BC是斜边得出∠A是解题的关键.6、B【解析】
根据频率=,即可求得总数,进而即可求得第四小组的频数.【详解】解:总数是5÷0.1=50人;
则第四小组的频数是50×(1-0.1-0.3-0.4)=50×0.2=10,故选B.【点睛】本题考查频率的计算公式,解题关键是熟记公式.7、D【解析】
假设与结论相反,可假设“四边形中没有一个角是直角或钝角”.【详解】假设与结论相反;可假设“四边形中没有一个角是直角或钝角”;与之同义的有“四边形中每一个角都是锐角”;故选:D【点睛】本题考查了反证法,解题的关键在于假设与结论相反.8、C【解析】
总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】①这50000名学生的数学考试成绩的全体是总体,说法正确;②每个考生是个体,说法错误,应该是每个考生的数学成绩是个体;③1名考生是总体的一个样本,说法错误,应是1名考生的数学成绩是总体的一个样本;④样本容量是1,说法正确;正确的说法共2个.故选C.【点睛】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.9、B【解析】
作AR⊥BC于R,AS⊥CD于S,根据题意先证出四边形ABCD是平行四边形,再由AR=AS推出BC=CD得平行四边形ABCD是菱形,再根据根据勾股定理求出AB即可.【详解】作AR⊥BC于R,AS⊥CD于S,连接AC、BD交于点O.由题意知:AD∥BC,AB∥CD,∴四边形ABCD是平行四边形,∵两个矩形等宽,∴AR=AS,∵AR•BC=AS•CD,∴BC=CD,∴平行四边形ABCD是菱形,∴AC⊥BD,在Rt△AOB中,∵OA=AC=6cm,OB=BD=8cm,∴AB==10(cm),故选:B.【点睛】本题主要考查菱形的判定和性质,证得四边形ABCD是菱形是解题的关键.10、C【解析】试题解析:∵解方程x2-7x+12=0
得:x=3或1
∵对角线长为6,3+3=6,不能构成三角形;
∴菱形的边长为1.
∴菱形ABCD的周长为1×1=2.故选C.二、填空题(每小题3分,共24分)11、35°【解析】
根据菱形的邻角互补求出∠B,再求出BE=BF,然后根据等腰三角形两底角相等求出∠BEF,再求出∠FEP,取AD的中点G,连接FG交EP于O,然后判断出FG垂直平分EP,再根据线段垂直平分线上的点到两端点的距离相等可得EF=FP,利用等边对等角求出∠FPE,再根据∠FPC=90°-∠FPE代入数据计算即可得解.【详解】在菱形ABCD中,连接EF,如图,∵∠A=70°,∴∠B=180°-870°=110°,∵E,F分别是边AB,BC的中点,∴BE=BF,∴∠BEF=(180°-∠B)=(180°-110°)=35°,∵EP⊥CD,AB∥CD,∴∠BEP=∠CPE=90°,∴∠FEP=90°-35°=55°,取AD的中点G,连接FG交EP于O,∵点F是BC的中点,G为AD的中点,∴FG∥DC,∵EP⊥CD,∴FG垂直平分EP,∴EF=PF,∴∠FPE=∠FEP=55°,∴∠FPC=90°-∠FPE=90°-55°=35°.故答案为:35°.【点睛】本题考查了菱形的性质,线段垂直平分线上的点到两端点的距离相等的性质,等边对等角的性质,熟记性质并作出辅助线求出EF=PF是解题的关键,也是本题的难点.12、(1,2)【解析】
先根据已知求出三角形三边长度,然后通过旋转发现,B、B2、B4…,即可得每偶数之间的B相差6个单位长度,根据这个规律可以求得B2018的坐标.【详解】∵AO=,BO=2,∴AB=,∴OA+AB1+B1C2=6,∴B2的横坐标为:6,且B2C2=2,∴B4的横坐标为:2×6=12,∴点B2018的横坐标为:2018÷2×6=1.∴点B2018的纵坐标为:2.∴点B2018的坐标为:(1,2),故答案是:(1,2).【点睛】考查了点的坐标规律变换以及勾股定理的运用,通过图形旋转,找到所有B点之间的关系是解决本题的关键.13、【解析】
由菱形的对角线互相平分且垂直可知菱形的面积等于小三角形面积的四倍可求出DO,根据勾股定理可求出AD,然后再根据直角三角形中斜边的中线等于斜边的一半,求解即可.【详解】解:∵菱形ABCD的对角线AC、BD相交于点O,且AC=4,菱形ABCD的面积为4,∴AO=2,DO=,∠AOD=90°,∴AD=3,∵E为AD的中点,∴OE的长为:AD=.故答案为:.【点睛】菱形的对角线的性质、勾股定理、直角三角形的性质都是本题的考点,根据题意求出DO和AD的长是解题的关键.14、2【解析】
在Rt△ACB中,,由题意设BD=B′D=AE=x,由△EDB′∽△ACB,可得,推出,可得,求出x即可解决问题。【详解】解:在中,,由题意设,∵,∴,∴,∴,∴,∴,故答案为2.【点睛】本题考查旋转变换、直角三角形的性质、相似三角形的判定和性质、勾股定理等知识,解题的关键是学会理由参数构建方程解决问题,所以中考常考题型.15、0.2.【解析】
首先根据频率=频数÷总数,计算从第一组到第四组的频率之和,再进一步根据一组数据中,各组的频率和是1,进行计算.【详解】解:根据题意得:第一组到第四组的频率之和是,又因为第五组的频率是0.1,所以第六组的频率是.故答案为0.2.【点睛】本题考查的是频率分布直方图,这类题目主要涉及以下三个计算公式:频率=频数÷样本容量,各组的频率之和为1,各组的频数之和=样本容量.16、或【解析】【分析】根据题中的运算规则得到M{3,2x+1,4x-1}=1+2x,然后再根据min{2,-x+3,5x}的规则分情况讨论即可得.【详解】M{3,2x+1,4x-1}==2x+1,∵M{3,2x+1,4x-1}=min{2,-x+3,5x},∴有如下三种情况:①2x+1=2,x=,此时min{2,-x+3,5x}=min{2,,}=2,成立;②2x+1=-x+3,x=,此时min{2,-x+3,5x}=min{2,,}=2,不成立;③2x+1=5x,x=,此时min{2,-x+3,5x}=min{2,,}=,成立,∴x=或,故答案为或.【点睛】本题考查了阅读理解题,一元一次方程的应用,分类讨论思想的运用等,解决问题的关键是读懂题意,依题意分情况列出一元一次方程进行求解.17、【解析】
抛物线图像向上平移一个单位,即纵坐标减1,然后整理即可完成解答.【详解】解:由题意得:,即【点睛】本题主要考查了函数图像的平移规律,即“左右横,上下纵,正减负加”的理解和应用是解题的关键.18、x≤且x≠0【解析】
根据题意得x≠0且1﹣2x≥0,所以且.故答案为且.三、解答题(共66分)19、(1)详见解析;(2)与△ABD和△ACD面积相等的三角形有△CEF、△BEF、△BEC、△BFC.【解析】
(1)根据全等三角形的判定和性质得出ED=FD,进而利用平行四边形的判定证明即可;(2)利用三角形的面积解答即可.【详解】(1)证明:在△ABF与△DEC中∵D是BC中点,∴BD=CD∵BE⊥AE,CF⊥AE∴∠BED=∠CFD=90,在△ABF与△DEC中,∴△BED≌△CFD(AAS),∴ED=FD,∵BD=CD,∴四边形BFEC是平行四边形;(2)与△ABD和△ACD面积相等的三角形有△CEF、△BEF、△BEC、△BFC.理由:∵四边形BECF是平行四边形,∴S△BDF=S△BDE=S△CDE=S△CDF,∵AF=DF,∴S△ABF=S△BDF,S△ACF=S△CDF∴S△BDF=S△BDE=S△CDE=S△CDF=S△ABF=S△ACF,∴S△ABD=S△ACD=S△CEF=S△BEF=S△BEC=S△BFC.【点睛】本题考查了全等三角形的判定与性质以及平行四边形形的判定,关键是根据全等三角形的判定和性质得出ED=FD.20、【解析】
先提公因式xy,然后再采用公式法进行因式分解.【详解】解:原式=.故答案为:【点睛】本题考查因式分解,因式分解的一般步骤为:先看有无公因式,再看能否套公式,十字相乘试一试,分组分解要合适;熟练的记牢公式是解决此类题的关键.21、【解析】
连接MA,可求得MA=2MC,在Rt△AMC中可求得MC,则可求BC,在Rt△ABC中,由勾股定理可求得AB.【详解】解:如图连接,在线段的垂直平分线上,,,,即,解得,,,在中,由勾股定理可得,即的长为.【点睛】本题考查线段垂直平分线的性质,解题的关键是熟练掌握线段垂直平分线的性质.22、(1);(2)方案二中每月付给销售人员的底薪是560元;(3)当销售件数少于70件时,提成方案二好些;当销售件数等于70件时,两种提成方案一样;当销售件数多于70件时,提成方案一好些.【解析】
解:(1)设所表示的函数关系式为,由图象,得解得:,所表示的函数关系式为;(2)∵每件商品的销售提成方案二比方案一少8元,把代入得解得方案二中每月付给销售人员的底薪是560元;(3)由题意,得方案一每件的提成为元,方案二每件的提成为元,设销售m件时两种工资方案所得到的工资数额相等,由题意,得,解得:.销售数量为70时,两种工资方案所得到的工资数额相等;当销售件数少于70件时,提成方案二好些;当销售件数等于70件时,两种提成方案一样;当销售件数多于70件时,提成方案一好些.23、(1)200;(2)补图见解析;(3)12;(4)300人.【解析】
(1)由76÷38%,可得总人数;先算社科类百分比,再求小说百分比,再求对应圆心角;(2)结合扇形图,分别求出人数,再画图;(3)用社科类百分比×2500可得.【详解】解:(1)200,126;(2)(3)由样本数据可知喜欢“社科类”书籍的学生人数占了总人数的12%,∴该校共有学生2500人,估计该校喜欢“社科类”书籍的学生人数:2500×12%=300(人)【点睛】本题考核知识点:数据的整理,用样本估计总体.解题关键点:从统计图获取信息.24、(4)y=x+4.(4);(4)不变,.【解析】试题分析:(4)用待定系数法,将M,N两点坐标代入解析式求出k,b即得一次函数解析式;(4)∵点C与点B关于x轴对称,B(0,4),∴C(0,-4),再由旋转性质可得DB=DE,∠BDE=90º,过点E作EP⊥x轴于P,易证△BDO≌△DEP,∴OD=PE,DP=BO=4,设D(,0),则E(,),设直线CE解析式是:y=kx+b,把C,E两点坐标代入得:,∴,∴CE解析式是y=x-4,∴F(4,0),OC=OF=4,∴PE=PF,∴EF=,∵A(-4,0),∴DF=4+a,DA=4-a,∴===;(4)此题连接BM,因为AO=BO,MO=PO,且∠BOM=∠AOP,得出△BOM≌△AOP(SAS),∵∠PAO=445º,∴∠MBP=∠PAO=445º,∴∠MBP=90°,在Rt△MBP中,MQ=PQ,∴BQ是此直角三角形斜边中线,等于斜边一半,BQ=MP,MP又是正方形对角线,∴MP=OP,∴BQ:OP=MP:OP=×OP:OP=,∴的值不变,是.试题解析:(4)用待定系数法,将M,N两点坐标代入解析式得:,解得b=4,k=4,∴一次函数的解析式是y=x+4;(4)∵点C与点B关于x轴对称,B(0,4),∴C(0,-4),再由旋转性质可得DB=DE,∠BDE=90º,过点E作EP⊥x轴,易证△BDO≌△DEP,设D(,0),则E(,)设直线CE解析式是:y=kx+b,,把C,E两点坐标代
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 摩托车轮辐相关项目实施方案
- 漂亮的气球课程设计
- 无线对讲机相关项目实施方案
- 手动松土器相关项目实施方案
- 电子秤电路课课程设计
- 激光加工工艺课程设计
- 筛板精馏塔检测课程设计
- 数字报警器课程设计
- 项目部安全管理人员安全培训试题附参考答案【B卷】
- 企业员工岗前安全培训试题附答案(巩固)
- 2022年云南现代烟草农业现状及发展策略
- 20m梁汽车吊吊装施工专项方案方案
- DB43∕T 742.1-2013 水稻育插秧机械化技术规范 第1部分:育秧
- 人教版高中语文选修-中国现代诗歌散文欣赏《雪落在中国的土地上》课件(共15张PPT)
- D-T型双轴卧式搅拌装置半釜持液量时功率特性的数值模拟
- 幼儿园保教实习与指导课件
- 登高作业错题解析
- 意外伤害保险业务监管办法(征求意见稿)政策解读培训试题
- 加油站罩棚拆除专项工程施工组织方案
- 350MW超临界锅炉讲义课件
- 幼儿绘本故事:没有靴子的猫店
评论
0/150
提交评论