版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届四川省眉山外国语学校八年级下册数学期末检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,将长方形纸片ABCD折叠,使点B与点D重合,折痕为EF,已知AB=6cm,BC=18cm,则Rt△CDF的面积是()A.27cm2 B.24cm2 C.22cm2 D.20cm22.如图,将正方形ABCD绕点A逆时针旋转30°得到AB′C′D′,如果AB=1,点C与C′的距离为()A. B. C.1 D.﹣13.下列说法是8的立方根;是64的立方根;是的立方根;的立方根是,其中正确的说法有个.A.1 B.2 C.3 D.44.下列结论中,不正确的是()A.对角线互相垂直的平行四边形是菱形B.对角线相等的平行四边形是矩形C.一组对边平行,一组对边相等的四边形是平行四边形D.对角线互相垂直的四边形面积等于对角线乘积的一半5.若点P(a,a﹣2)在第四象限,则a的取值范围是()A.﹣2<a<0 B.0<a<2C.a>2 D.a<06.如图,已知A(2,1),现将A点绕原点O逆时针旋转90°得到A1,则A1的坐标是()A.(﹣1,2) B.(2,﹣1) C.(1,﹣2) D.(﹣2,1)7.如图,矩形中,分别是线段的中点,,动点沿的路线由点运动到点,则的面积是动点运动的路径总长的函数,这个函数的大致图象可能是()A. B. C. D.8.下列各点中,在第四象限的点是()A.(2,3) B.(﹣2,﹣3) C.(2,﹣3) D.(﹣2,3)9.一元二次方程的解为()A. B.B. C., D.,10.直线y=x+1与y=–2x–4交点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.一束光线从点A(3,3)出发,经过y轴上点C反射后经过点B(1,0),则光线从A点到B点经过的路线长是()A.4 B.5 C.6 D.712.计算a2a-b-bA.a-b B.a+b C.a2-b2 D.1二、填空题(每题4分,共24分)13.若五个整数由小到大排列后,中位数为4,唯一的众数为2,则这组数据之和的最小值是_____.14.关于x的方程a2x+x=1的解是__.15.如图,在菱形ABCD中,若AC=6,BD=8,则菱形ABCD的面积是____.16.如图,在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA边上的中点,连结AC、BD,回答问题(1)对角线AC、BD满足条件_____时,四边形EFGH是矩形.(2)对角线AC、BD满足条件_____时,四边形EFGH是菱形.(3)对角线AC、BD满足条件_____时,四边形EFGH是正方形.17.如图,长方形ABCD的边AB在x轴上,且AB的中点与原点重合,AB=2,AD=1,直线y=-x+b与矩形ABCD的边有公共点,则实数b的取值范围是________.18.如图,直线y=-x+m与y=nx+4n(n≠0)的交点的横坐标为-2,则关于x的不等式-x+m>nx+4n的解集为____________.三、解答题(共78分)19.(8分)在平面直角坐标系中,点A,B分别是x轴正半轴与y轴正半轴上一点,OA=m,OB=n,以AB为边在第一象限内作正方形ABCD.(1)若m=4,n=3,直接写出点C与点D的坐标;(2)点C在直线y=kx(k>1且k为常数)上运动.①如图1,若k=2,求直线OD的解析式;②如图2,连接AC、BD交于点E,连接OE,若OE=2OA,求k的值.20.(8分)图①,图②均是的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1,点A在格点上.试在网格中画出顶点在格点上,面积为6,且符合相应条件的图形.(1)在图①中,画出以点A为顶点的非特殊的平行四边形.(2)在图②中,画出以点A为对角线交点的非特殊的平行四边形.21.(8分)如图,在正方形网格中,每个小正方形的边长为1,ABC为格点三角形(即A,B,C均为格点),求BC上的高.22.(10分)化简:÷(-a-2),并代入一个你喜欢的值求值.23.(10分)如图,方格纸中每个小方格都是长为1个单位的正方形.若学校位置的坐标为A(1,2),解答以下问题:(1)请在图中建立适当的直角坐标系,并写出图书馆B位置的坐标;(2)若体育馆位置的坐标为C(-3,3),请在坐标系中标出体育馆的位置,并顺次连接学校、图书馆、体育馆,得到△ABC,求△ABC的面积.24.(10分)全国两会民生话题成为社会焦点.合肥市记者为了了解百姓“两会民生话题”的聚焦点,随机调查了合肥市部分市民,并对调查结果进行整理.绘制了如图所示的不完整的统计图表.组别焦点话题频数(人数)A食品安全80B教育医疗mC就业养老nD生态环保120E其他60请根据图表中提供的信息解答下列问题:(1)填空:m=,n=.扇形统计图中E组所占的百分比为%;(2)合肥市人口现有750万人,请你估计其中关注D组话题的市民人数;(3)若在这次接受调查的市民中,随机抽查一人,则此人关注C组话题的概率是多少?25.(12分)已知x=2+,求代数式的值.26.在平面直角坐标系xOy中,边长为6的正方形OABC的顶点A,C分别在x轴和y轴的正半轴上,直线y=mx+2与OC,BC两边分别相交于点D,G,以DG为边作菱形DEFG,顶点E在OA边上.(1)如图1,当菱形DEFG的一顶点F在AB边上.①若CG=OD时,求直线DG的函数表达式;②求证:OED≌BGF.(2)如图2,当菱形DEFG的一顶点F在AB边右侧,连接BF,设CG=a,FBG面积为S.求S与a的函数关系式;并判断S的值能否等于1?请说明理由;(3)如图3,连接GE,当GD平分∠CGE时,m的值为.(直接写出答案).
参考答案一、选择题(每题4分,共48分)1、B【解析】
求Rt△CDF的面积,CD边是直角边,有CD=AB=6cm,只要求出边FC即可.由于点B与点D重合,所以有FD=BF=BC-FC=18-FC,利用勾股定理可求出FC了.【详解】解:设FC=x,Rt△CDF中,CD=6cm,FC=x,又折痕为EF,
∴FD=BF=BC-FC=18-FC=18-x,
Rt△CDF中,DF2=FC2+CD2,
即(18-x)2=x2+62,
解得x=8,
∴面积为故选:B.【点睛】解决本题的关键是根据折叠及矩形的性质利用勾股定理求得CF的长度;易错点是得到DF与CF的长度和为18的关系.2、D【解析】
连接CC′,AE,延长AE交CC′于F,由正方形性质可证明△ADE≌△AEB′,所以DE=B′E,根据∠BAB′=30°可知∠DAE=∠EAB′=30°,即可求出DE的长度,进而求出CE的长度,根据∠FEC=60°可知CF的长度,即可求出CC′的长度.【详解】连接CC′,AE,延长AE交CC′于F,∵正方形ABCD绕点A逆时针旋转30°得到AB′C′D′,∴AD=AB′,∠ADE=∠AB′E=90°,AE=AE,∴△ADE≌△AEB′,∴∠DAE=∠EAB′,∵旋转角为30°,∴∠BAB′=30°,∴∠DAB′=60°,∴∠DAE=∠EAB′=30°,∴AE=2DE,∴AD2+DE2=(2DE)2,∴DE=,∴CE=1-,∵DE=EB′∴EC=EC′,∵∠DEA=∠AEB′=60°,∴∠FEC′=∠FEC=60°,∴∠FCE=30°,∴△FEC≌△FEC′,∴CF=FC′,∴EF⊥CC′,∴EF=CE=,∴CF==,∴CC′=2CF=,故选D.【点睛】本题考查旋转的性质,找出旋转后的边、角的对应等量关系是解题关键.3、C【解析】
根据立方根的概念即可求出答案.【详解】①2是8的立方根,故①正确;②4是64的立方根,故②错误;③是的立方根,故③正确;④由于(﹣4)3=﹣64,所以﹣64的立方根是﹣4,故④正确.故选C.【点睛】本题考查了立方根的概念,解题的关键是正确理解立方根的概念,本题属于基础题型.4、C【解析】
由菱形和矩形的判定得出A、B正确,由等腰梯形的判定得出C不正确,由对角线互相垂直的四边形面积等于对角线乘积的一半,得出D正确,即可得出结论.【详解】A.∵对角线互相垂直的平行四边形是菱形,∴A正确;B.∵对角线相等的平行四边形是矩形,∴B正确;C.∵一组对边平行,一组对边相等的四边形是平行四边形或等腰梯形,∴C不正确;D.∵对角线互相垂直的四边形面积等于对角线乘积的一半,∴D正确;故选:C.【点睛】考查了菱形的判定、矩形的判定、平行四边形的判定、等腰梯形的判定以及四边形面积;熟记菱形/矩形和等腰梯形的判定方法是解题的关键.5、B【解析】
根据第四象限点的坐标符号,得出a>0,a﹣1<0,即可得出0<a<1,选出答案即可.【详解】解:∵点P(a,a﹣1)在第四象限,∴a>0,a﹣1<0,解得0<a<1.故选:B6、A【解析】
根据点(x,y)绕原点逆时针旋转90°得到的坐标为(-y,x)解答即可.【详解】已知A(2,1),现将A点绕原点O逆时针旋转90°得到A1,所以A1的坐标为(﹣1,2).故选A.【点睛】本题考查的是旋转的性质,熟练掌握坐标的旋转是解题的关键.7、C【解析】
根据题意分析△PAB的面积的变化趋势即可.【详解】根据题意当点P由E向C运动时,△PAB的面积匀速增加,当P由C向D时,△PAB的面积保持不变,当P由D向F运动时,△PAB的面积匀速减小但不为1.故选C.【点睛】本题为动点问题的函数图象探究题,考查了一次函数图象的性质,分析动点到达临界点前后函数值变化是解题关键.8、C【解析】
根据第四象限的点的横坐标是正数,纵坐标是负数解答.【详解】解:纵观各选项,第四象限的点是(2,﹣3).故选:C.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决问题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).9、D【解析】
把方程整理成,然后因式分解求解即可.【详解】解:把方程整理成即∴或解得:,故选:D.【点睛】此题考查了一元二次方程的解法,一元二次方程的解法有:直接开平方法;分解因式法;公式法;配方法,本题涉及的解法有分解因式法,此方法的步骤为:把方程右边通过移项化为0,方程左边利用提公因式法,式子相乘法,公式法以及分组分解法分解因式,然后根据两数积为0,两数中至少有一个为0,转化为两个一元一次方程,进而得到原方程的解.10、C【解析】试题分析:直线y=x+1的图象经过一、二、三象限,y=–2x–4的图象经过二、三、四象限,所以两直线的交点在第三象限.故答案选C.考点:一次函数的图象.11、B【解析】
如果设A点关于y轴的对称点为A′,那么C点就是A′B与y轴的交点.易知A′(-3,3),又B(1,0),可用待定系数法求出直线A′B的方程.再求出C点坐标,根据勾股定理分别求出AC、BC的长度.那么光线从A点到B点经过的路线长是AC+BC,从而得出结果.【详解】解:如果将y轴当成平面镜,设A点关于y轴的对称点为A′,则由光路知识可知,A′相当于A的像点,光线从A到C到B,相当于光线从A′直接到B,所以C点就是A′B与y轴的交点.∵A点关于y轴的对称点为A′,A(3,3),∴A′(-3,3),进而由两点式写出A′B的直线方程为:y=−(x-1).令x=0,求得y=.所以C点坐标为(0,).那么根据勾股定理,可得:AC==,BC==.因此,AC+BC=1.故选:B.【点睛】此题考查轴对称的基本性质,勾股定理的应用等知识点.此题考查的思维技巧性较强.12、B【解析】
原式利用同分母分式的减法法则计算,约分即可得到结果.【详解】a2a-b-故选:B.【点睛】考查了分式的加减法,熟练掌握运算法则是解本题的关键.二、填空题(每题4分,共24分)13、19【解析】
根据“五个整数由小到大排列后,中位数为4,唯一的众数为2”,可知此组数据的第三个数是4,第一个和第二个数是2,据此可知当第四个数是5,第五个数是6时和最小.【详解】∵中位数为4∴中间的数为4,又∵众数是2∴前两个数是2,∵众数2是唯一的,∴第四个和第五个数不能相同,为5和6,∴当这5个整数分别是2,2,4,5,6时,和最小,最小是2+2+4+5+6=19,故答案为19.【点睛】本题考查中位数和众数,能根据中位数和众数的意义进行逆向推理是解决本题的关键.在读题时需注意“唯一”的众数为2,所以除了两个2之外其它的数只能为1个.14、.【解析】
方程合并后,将x系数化为1,即可求出解.【详解】解:方程合并得:(a2+1)x=1,解得:x=,故答案为:.15、1【解析】
试题解析:∵菱形ABCD的对角线AC=6,BD=8,∴菱形的面积S=AC•BD=×8×6=1.考点:菱形的性质.16、AC⊥BDAC=BDAC⊥BD且AC=BD【解析】
先证明四边形EFGH是平行四边形,(1)在已证平行四边形的基础上,要使所得四边形是矩形,则需要一个角是直角,故对角线应满足互相垂直(2)在已证平行四边形的基础上,要使所得四边形是菱形,则需要一组邻边相等,故对角线应满足相等(3)联立(1)(2),要使所得四边形是正方形,则需要对角线垂直且相等【详解】解:连接AC、BD.∵E、F、G、H分别是AB、BC、CD、DA边上的中点,∴EF∥AC,EF=AC,FG∥BD,FG=BD,GH∥AC,GH=AC,EH∥BD,EH=BD.∴EF∥HG,EF=GH,FG∥EH,FG=EH.∴四边形EFGH是平行四边形;(1)要使四边形EFGH是矩形,则需EF⊥FG,由(1)得,只需AC⊥BD;(2)要使四边形EFGH是菱形,则需EF=FG,由(1)得,只需AC=BD;(3)要使四边形EFGH是正方形,综合(1)和(2),则需AC⊥BD且AC=BD.故答案是:AC⊥BD;AC=BD;AC⊥BD且AC=BD【点睛】此题主要考查平行四边形,矩形,菱形以及正方形的判定条件17、−1≤b≤1【解析】
由AB,AD的长度可得出点A,C的坐标,分别求出直线经过点A,C时b的值,结合图象即可得出结论.【详解】解:∵AB=1,AD=1,∴点A的坐标为(−1,0),点C的坐标为(1,1).当直线y=−x+b过点A时,0=1+b,解得:b=−1;当直线y=−x+b过点C时,1=−1+b,解得:b=1.∴当直线y=−x+b与矩形ABCD的边有公共点时,实数b的取值范围是:−1≤b≤1.故答案为:−1≤b≤1.【点睛】本题考查了一次函数图象上点的坐标特征以及矩形的性质,利用极限值法求出直线经过点A,C时b的值是解题的关键.18、<-1【解析】
根据图象求出不等式的解集即可.【详解】由图象可得当时,直线y=-x+m的图象在直线y=nx+4n(n≠0)的图象的上方故可得关于x的不等式-x+m>nx+4n的解集为故答案为:<-1.【点睛】本题考查了解一元一次不等式的问题,掌握用图象法解一元一次不等式是解题的关键.三、解答题(共78分)19、(1)C(3,7),D(7,4);(2)①y=x;②.【解析】
(1)根据题意把m=4,n=3代入解答即可;(2)①利用待定系数法确定函数关系式即可;②根据B、D坐标表示出E点坐标,由勾股定理可得到m、n之间的关系式,用m表示出C点坐标,根据函数关系式解答即可.【详解】解:(1)∵OA=m,OB=n,以AB为边在第一象限内作正方形ABCD,∴C(n,m+n),D(m+n,m),把m=4,n=3代入可得:C(3,7),D(7,4),(2)①设C(a,2a),由题意可得:,解得:m=n=a,∴D(2a,a),∴直线OD的解析式为:y=x,②由B(0,n),D(m+n,m),可得:E(,),OE=OA,∴()2+()2=8m2,可得:(m+n)2=16m2,∴m+n=4m,n=3n,∴C(3m,4m),∴直线OC的解析式为:y=x,可得:k=.故答案为(1)C(3,7),D(7,4);(2)①y=x;②.【点睛】此题是考查一次函数的综合题,关键是根据待定系数法确定函数关系式和勾股定理解答.20、(1)见解析;(2)见解析.【解析】
(1)画出底为3,高为2的平行四边形ABCD即可.
(2)利用数形结合的思想解决问题即可.【详解】解:(1)如图,平行四边形ABCD即为所求.
(2)如图,平行四边形EFGH即为所求.图①图②【点睛】本题考查作图-应用与设计,平行四边形的判定和性质等知识,解题的关键是学会题数形结合的思想思考问题.21、.【解析】
根据网格,由勾股定理求,,的值,即可得到为直角三角形,利用“面积法”求斜边上的高.【详解】中,,,,,为直角三角形,设边上的高为,则有,.【点睛】本题考查了勾股定理的逆定理的运用,充分利用网格,构造直角三角形是解题的关键.22、,.【解析】分析:首先将括号里面的分式进行通分,然后将分式的分子和分母进行因式分解,最后将除法改成乘法进行约分化简,最后选择a的值时,不能取a=2和a=±1.详解:原式=,当a=1时,原式=.点睛:本题主要考查的是分式的化简求值问题,属于基础题型.学会因式分解是解决分式问题的基本要求.23、(1)(-3,-2);(2)1.
【解析】
(1)利用点A的坐标画出直角坐标系;根据点的坐标的意义描出点B;
(2)利用三角形的面积得到△ABC的面积.【详解】解:(1)建立直角坐标系如图所示:
图书馆B位置的坐标为(-3,-2);
(2)标出体育馆位置C如图所示,观察可得,△ABC中BC边长为5,BC边上的高为4,所以△ABC的面积为=×5×4=1.【点睛】本题考查了坐标确定位置:平面内的点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.24、(1)40;100;15;(2)225万人;(3).【解析】试题分析:(1)求得总人数,然后根据百分比的定义即可求得;(2)利用总人数100万,乘以所对应的比例即可求解;(3)利用频率的计算公式即可求解.试题解析:解:(1)总人数是:80÷20%=400(人),则m=400×10%=40(人),C组的频数n=400﹣80﹣40﹣120﹣60=100,E组所占的百分比是:×100%=15%;(2)750×=225(万人);(3)随机抽查一人,则此人关注C组话题的概率是=.故答案为40,100,15,.考点:频数(率)分布表;用样本估计总体;扇形统计图;概率公式.25、【解析】
把代入代数式,再根据平方差公式、完全平方公式计算即可求解.【详解】解:【点睛】本题考查了二次根式的化简求值,解题的关键是掌握平方差公式、完全平方公式.26、(6)①y=2x+2;②见解析;(2)S≠6,见解析;(6)【解析】
(6)①将x=0代入y=mx+2得y=2,故此点D的坐标为(0,2),由CG=OD=2可知点G的坐标为(2,6),将点G(2,6)代入y=mx+2可求得m=2;②延长GF交y轴于点M,根据AAS可证明△OED≌△BGF;(2)如图2所示:过点F作FH⊥BC,垂足为H,延长FG交y轴与点N.先证明Rt△GHF≌Rt△EOD(AAS),从而得到FH=DO=2,由三角形的面积公式可知:S=6﹣a.②当s=6时,a=5,在△CGD中由勾股定理可求得DG=,由菱形的性质可知;DG=DE=,在Rt△DOE中由勾股定理可求得OE=>6,故S≠6;(6)如图6所示:连接DF交EG于点M,过点M作MN⊥y轴,垂足为N.由菱形的性质可知:DM⊥GM,点M为DF的中点,根据角平分线的性质可知:MD=CD=5,由中点坐标公式可知点M的纵坐标为6,得到ND=6,根据勾股定理可求得MN=,则得到点M的坐标为(,6)然后利用待定系数法求得DM、GM的解析式,从而可得到点G的坐标,最后将点G的坐标代入y=mx+2可求得m的值.【详解】解:(6)①∵将x=0代入
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 宠物店店员工作总结
- 黑龙江省哈尔滨市道里区2023-2024学年九年级上学期化学期末测试题
- 大型活动销售总结
- 婚庆策划师的工作总结
- 2025年云南省八省联考高考地理模拟试卷
- 《胡萝卜素的提取定》课件
- 《怎样做品牌规划》课件
- 2023年江西省上饶市公开招聘警务辅助人员辅警笔试自考题1卷含答案
- 2022年湖北省黄冈市公开招聘警务辅助人员辅警笔试自考题1卷含答案
- 2024年江苏省无锡市公开招聘警务辅助人员辅警笔试自考题1卷含答案
- 手绘pop教学课件
- 2024脑血管病指南
- 2022年海南公务员考试申论试题(B卷)
- 企业三年营销规划
- 教师资格考试高中历史面试试题及解答参考
- 2024年社区工作者考试试题库
- 工厂设备工程师年终总结
- 福建省厦门市2024-2025学年新人教版九年级语文上学期期末质量检测试题
- 办公室行政培训
- (完整版)python学习课件024600
- 湖南省岳阳市2023-2024学年高一上学期1月期末质量监测试题+物理 含答案
评论
0/150
提交评论