山东省潍坊诸城市第七中学2024年八年级数学第二学期期末教学质量检测试题含解析_第1页
山东省潍坊诸城市第七中学2024年八年级数学第二学期期末教学质量检测试题含解析_第2页
山东省潍坊诸城市第七中学2024年八年级数学第二学期期末教学质量检测试题含解析_第3页
山东省潍坊诸城市第七中学2024年八年级数学第二学期期末教学质量检测试题含解析_第4页
山东省潍坊诸城市第七中学2024年八年级数学第二学期期末教学质量检测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省潍坊诸城市第七中学2024年八年级数学第二学期期末教学质量检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.用配方法解方程时,配方后正确的是()A. B. C. D.2.有一人患了流感,经过两轮传染后共有100人患了流感,那么每轮传染中,平均一个人传染的人数()A.8人 B.9人 C.10人 D.11人3.在“爱我永州”中学生演讲比赛中,五位评委分别给甲、乙两位选手的评分如下:甲:8、7、9、8、8乙:7、9、6、9、9则下列说法中错误的是()A.甲、乙得分的平均数都是8B.甲得分的众数是8,乙得分的众数是9C.甲得分的中位数是9,乙得分的中位数是6D.甲得分的方差比乙得分的方差小4.下列几组数中,不能作为直角三角形三条边长的是()A.3,4,5 B.5,12,13 C.7,24,25 D.9,39,405.若,则的值为()A.9 B.-9 C.35 D.-356.如图,在Rt△ABC中(AB>2BC),∠C=90°,以BC为边作等腰△BCD,使点D落在△ABC的边上,则点D的位置有()A.2个 B.3个 C.4个 D.5个7.反比例函数y=,当x的值由n(n>0)增加到n+2时,y的值减少3,则k的值为()A. B. C.﹣ D.8.如图,在△ABC中,∠C=90°,AC=4,BC=2,点A、C分别在x轴、y轴上,当点A在x轴上运动时,点C随之在y轴上运动.在运动过程中,点B到原点的最大距离是(

)A.6 B.2 C.2 D.2+29.如图,直线与的交点的横坐标为,则关于的不等式的整数解为().A. B.C. D.10.如图,在矩形纸片ABCD中,AD=4cm,把纸片沿直线AC折叠,使点D落在E处,CE交AB于点O,若BO=3m,则AC的长为()A.6cm B.8cm C.5cm D.4cm二、填空题(每小题3分,共24分)11.若一组数据的平均数,方差,则数据,,的方差是_________.12.等腰三角形中,两腰上的高所在的直线所形成的锐角为35°,则等腰三角形的底角为___________13.如图,矩形ABCD中,AB=6,BC=8,点F为BC边上的一个动点,把△ABF沿AF折叠。当点B的对应点B′落在矩形ABCD的对称轴上时,则BF的长为___.14.若,则分式_______.15.若关于x的方程=m无解,则m的值为_____.16.菱形ABCD中,对角线AC=8,BD=6,则菱形的边长为_____.17.如图,正方形ABCD中,点E是对角线BD上的一点,BE=BC,过点E作EF⊥AB,EG⊥BC,垂足分别为点F,G,则正方形FBGE与正方形ABCD的相似比为_____.18.已知一次函数y=kx+b(k≠0)的图象经过点(0,1),且y随x的增大而增大,请你写出一个符合上述条件的函数式_____.(答案不唯一)三、解答题(共66分)19.(10分)小军和爸爸同时从家骑自行车去图书馆,爸爸先以150米/分的速度骑行一段时间,休息了5分钟,再以m米/分的速度到达图书馆,小军始终以同一速度骑行,两人行驶的路程y(米)与时间x(分)的关系如图所示,请结合图象,解答下列问题:(1)a=,b=,m=;(2)若小军的速度是120米/分,求小军在途中与爸爸第二次相遇时,距图书馆的距离;(3)在(2)的条件下,爸爸自第二次出发至到达图书馆前,何时与小军相距100米?20.(6分)解分式方程:(1);(2)=1;21.(6分)(问题原型)在图①的矩形中,点、、、分别在、、、上,若,则称四边形为矩形的反射四边形;(操作与探索)在图②,图③的矩形中,,,点、分别在、边的格点上,试利用正方形网格分别在图②、图③上作矩形的反射四边形;(发现与应用)由前面的操作可以发现,一个矩形有不同的反射四边形,且这些反射四边形的周长都相等.若在图①的矩形中,,,则其反射四边形的周长为______.22.(8分)某校八年级在一次广播操比赛中,三个班的各项得分如下表:服装统一动作整齐动作准确八(1)班808487八(2)班977880八(3)班907885(1)填空:根据表中提供的信息,在服装统一方面,三个班得分的平均数是_________;在动作准确方面最有优势的是_________班(2)如果服装统一、动作整齐、动作准确三个方面按20%、30%、50%的比例计算各班的得分,请通过计算说明哪个班的得分最高.23.(8分)已知:如图,E,F为□ABCD对角线AC上的两点,且AE=CF,连接BE,DF,求证:BE=DF.24.(8分)阅读材料,解答问题:有理化因式:两个含有根式的非零代数式相乘,如果它们的积不含有根式,那么这两个代数式相互叫做有理化因式.例如:的有理化因式是;1﹣的有理化因式是1+.分母有理化:分母有理化又称“有理化分母”,也就是把分母中的根号化去.指的是如果代数式中分母有根号,那么通常将分子、分母同乘以分母的有理化因式,达到化去分母中根号的目的.如:﹣1,.请根据上述材料,计算:的值.25.(10分)直线与轴、轴分别交于两点,以为边向外作正方形,对角线交于点,则过两点的直线的解析式是__________.26.(10分)为声援扬州“运河申遗”,某校举办了一次运河知识竞赛,满分10分,学生得分为整数,成绩达到6分以上(包括6分)为合格,达到9分以上(包含9分)为优秀.这次竞赛中甲乙两组学生成绩分布的条形统计图如图所示.(1)补充完成下面的成绩统计分析表:组别

平均分

中位数

方差

合格率

优秀率

甲组

6.7

3.41

90%

20%

乙组

7.5

1.69

80%

10%

(2)小明同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上表可知,小明是组的学生;(填“甲”或“乙”)(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩要好于甲组.请你给出两条支持乙组同学观点的理由.

参考答案一、选择题(每小题3分,共30分)1、B【解析】

根据配方法解方程的方法和步骤解答即可.【详解】解:对于方程,移项,得:,两边同时除以3,得:,配方,得:,即.故选:B.【点睛】本题考查了用配方法解一元二次方程,属于基础题型,熟练掌握配方的方法和步骤是解答的关键.2、B【解析】试题分析:设每轮传染中平均一个人传染的人数为x人,第一轮过后有(1+x)个人感染,第二轮过后有(1+x)+x(1+x)个人感染,那么由题意可知1+x+x(1+x)=100,整理得,,解得x=9或-11,x=-11不符合题意,舍去.那么每轮传染中平均一个人传染的人数为9人.故选B.考点:一元二次方程的应用.3、C【解析】

分别求出甲、乙的平均数、众数、中位数及方差可逐一判断.【详解】选项A,由平均数的计算方法可得甲、乙得分的平均数都是8,此选项正确;选项B,甲得分次数最多是8分,即众数为8,乙得分最多的是9分,即众数为9故此选项正确;选项C,甲得分从小到大排列为:7、8、8、8、9,可得甲的中位数是8分;乙得分从小到大排列为:6、7、9、9、9,可得乙的中位数是9分;此选项错误;选项D,×[(8﹣8)2+(7﹣8)2+(9﹣8)2+(8﹣8)2+(8﹣8)2]=×2=0.4,=×[(7﹣8)2+(9﹣8)2+(6﹣8)2+(9﹣8)2+(9﹣8)2]=×8=1.6,所以,故D正确;故答案选C.考点:算术平均数;中位数;众数;方差.4、D【解析】

由勾股定理的逆定理,只要验证两小边的平方和是否等于最长边的平方,即可解答.【详解】解:A、32+42=52,能构成直角三角形,不符合题意;

B、122+52=132,能构成直角三角形,不符合题意;

C、72+242=252,能构成直角三角形,不符合题意;

D、92+392≠402,不能构成直角三角形,符合题意;

故选:D.【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.5、C【解析】

先将两边同时平方可得:a2-2ab+b2=4,再将a2+b2=18代入可得ab的值,从而得到5ab的值.【详解】因为所以a2-2ab+b2=4,又因为,所以-2ab=-14,所以ab=7,所以5ab=35.故选:C.【点睛】考查了运用完全平方公式变形求值,解题关键是对进行变形,进而求得ab的值.6、C【解析】

分情况,BC为腰,BC为底,分别进行判断得到答案即可【详解】以BC为腰时,以B为圆心画圆将会与AB有一个交点、以C为圆心画圆同样将会与AB有两个个交点;以BC为底时,做BC的垂直平分线将会与AB有一个交点,所以BC为边作等腰三角形在AB上可找到4个点,故选C【点睛】本题主要考查等腰三角形的性质,充分理解基本性质能够分情况讨论是本题关键7、D【解析】

根据函数的增减性,可得分式方程,根据解分式方程,可得答案.【详解】由题意,得﹣=3,解得k=,故选:D.【点睛】本题考查了反比例函数,利用函数的增减性得出分式方程是解题关键.8、D【解析】试题分析:作AC的中点D,连接OD、DB,∵OB≤OD+BD,∴当O、D、B三点共线时OB取得最大值,∵D是AC中点,∴OD=AC=2,∵BD=,OD=AC=2,∴点B到原点O的最大距离为2+2,故选D.考点:1.二次函数的应用;2.两点间的距离;3.勾股定理的应用.9、D【解析】

满足不等式-x+m>nx+4n>0就是直线y=-x+m位于直线y=nx+4n的上方且位于x轴的上方的图象,据此求得自变量的取值范围即可.【详解】当时,对于,则.故的解集为.与的交点的横坐标为,观察图象可知的解集为.的解集为.为整数,.【点睛】此题考查一次函数与一元一次不等式,掌握运算法则是解题关键10、D【解析】

根据折叠前后角相等可证AO=CO,在直角三角形CBO中,运用勾股定理求得CO,再根据线段的和差关系和勾股定理求解即可.【详解】根据折叠前后角相等可知∠DCA=∠ACO,∵四边形ABCD是矩形,∴AB∥CD,AD=BC=4cm,∴∠DCA=∠CAO,∴∠ACO=∠CAO,∴AO=CO,在直角三角形BCO中,CO==5cm,∴AB=CD=AO+BO=3+5=8cm,在Rt△ABC中,AC=cm,故选:D.【点睛】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.二、填空题(每小题3分,共24分)11、【解析】

根据题意,由平均数的公式和方差公式可知,新数据的平均数为6【详解】解:∵,∴,∵,∴;故答案为:3.【点睛】本题考查了平均数和方差的计算,解题的关键是熟练掌握求平均数和方差的方法.12、17.5°或72.5°【解析】

分两种情形画出图形分别求解即可解决问题.【详解】解:①如图,当∠BAC是钝角时,由题意:AB=AC,∠AEH=∠ADH=90°,∠EHD=35°,∴∠BAC=∠EAD=360°-90°-90°-35°=145°,∴∠ABC=;②如图,当∠A是锐角时,由题意:AB=AC,∠CDA=∠BEA=90°,∠CHE=35°,∴∠DHE=145°,∴∠A=360°-90°-90°-115°=35°,∴∠ABC=;故答案为:17.5°或72.5°.【点睛】本题考查等腰三角形的性质,四边形内角和定理等知识,解题的关键是用分类讨论的思想思考问题,属于中考常考题型.13、2或9−3.【解析】

分两种情况考虑:B′在横对称轴上与B′在竖对称轴上,分别求出BF的长即可.【详解】当B′在横对称轴上,此时AE=EB=3,如图1所示,由折叠可得△ABF≌△AB′F∴∠AFB=∠AFB′,AB=AB′=6,BF=B′F,∴∠B′MF=∠B′FM,∴B′M=B′F,∵EB′∥BF,且E为AB中点,∴M为AF中点,即EM为中位线,∠B′MF=∠MFB,∴EM=BF,设BF=x,则有B′M=B′F=BF=x,EM=x,即EB′=x,在Rt△AEB′中,根据勾股定理得:3+(x)=6,解得:x=2,即BF=2;当B′在竖对称轴上时,此时AM=MD=BN=CN=4,如图2所示:设BF=x,B′N=y,则有FN=4−x,在Rt△FNB′中,根据勾股定理得:y+(4−x)=x,∵∠AB′F=90°,∴∠AB′M+∠NB′F=90°,∵∠B′FN+∠NB′F=90°,∴∠B′FN=∠AB′M,∵∠AMB′=∠B′NF=90°,∴△AMB′∽△B′NF,∴,即,∴y=x,∴(x)+(4−x)=x,解得x=9+3,x=9−3,∵9+3>4,舍去,∴x=9−3所以BF的长为2或9−3,故答案为:2或9−3.【点睛】此题考查翻折变换(折叠问题),解题关键在于作辅助线14、【解析】

先把化简得到,然后把分式化简,再把看作整体,代入即可.【详解】∵,化简可得:,∵,把代入,得:原式=;故答案为:.【点睛】本题考查了分式的化简求值,解题的关键是利用整体代入的思想进行解题.15、或.【解析】

分式方程无解的两种情况是:1.分式方程去分母化为整式方程,整式方程无解;2.整式方程的解使分式方程分母为零.据此分析即可.【详解】解:方程两边同时乘以(2x﹣3),得:x+4m=m(2x﹣3),整理得:(2m﹣1)x=7m①当2m﹣1=0时,整式方程无解,m=②当2m﹣1≠0时,x=,x=时,原分式方程无解;即,解得m=故答案为:或.【点睛】本题考查了分式方程的解,解决本题的关键是明确分式方程无解的条件几种情况,然后再分类讨论.16、5【解析】

根据菱形的对角线互相垂直平分求出OA、OB,再利用勾股定理列式进行计算即可得解.【详解】如图,∵四边形ABCD是菱形,∴OAAC=4,OBBD=3,AC⊥BD,∴AB5故答案为:5【点睛】本题主要考查了菱形的对角线互相垂直平分的性质,勾股定理的应用,熟记菱形的各种性质是解题的关键.17、【解析】

设BG=x,则BE=x,即BC=x,则正方形FBGE与正方形ABCD的相似比=BG:BC=x:x=:2.【详解】设BG=x,则BE=x,∵BE=BC,∴BC=x,则正方形FBGE与正方形ABCD的相似比=BG:BC=x:x=:2.故答案为:.【点睛】本题主要考查正方形的性质,图形相似的的性质.解此题的关键在于根据正方形的性质得到相关边长的比.18、y=x+1【解析】

∵一次函数y=kx+b(k≠0)的图象经过点(0,1),且y随x的增大而增大,∴k>0,图象经过点(0,1),∴b=1,只要符合上述条件即可.【详解】解:只要k>0,b>0且过点(0,1)即可,由题意可得,k>0,b=1,符合上述条件的函数式,例如y=x+1(答案不唯一)【点睛】一次函数y=kx+b的图象有四种情况:

①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限,y的值随x的值增大而增大;

②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限,y的值随x的值增大而增大;

③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限,y的值随x的值增大而减小;

④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限,y的值随x的值增大而减小.三、解答题(共66分)19、(1)a=10,b=15,m=200;(2)750米;(3)17.5或20分.【解析】

(1)根据时间=路程÷速度,即可求出a的值,结合休息的时间为5分钟,即可求出b的值,再根据速度=路程÷时间,求出m的值;(2)根据数量关系找出线段BC、OD所在的直线函数解析式,联立方程即可求出即可;(3)根据(2)结论,结合二者之间相距100米,即可得到关于x的绝对值的关系式,然后分类求解即可.【详解】(1)a=1500,b=a+5=15,m=(3000-1500)(22.5-15)=200故答案为10,15,200;(2)∵B(15,1500),C(22.5,3000)∴BC段关系式为:∵小军的速度是120米/分,∴OD段关系式为:相遇时,即,即120x=200x-1500,解得:x=18.75,此时:=2250,距离图书馆:3000-2250=750(米),(3)由题意可得:||=100,所以:当=100时,解得x=20,当时,解得x=17.5.∴爸爸出发17.5分钟或20分钟时,自第二次出发至到达图书馆前与小军相距100米20、(1)经检验x=3是分式方程的解;(2)经检验x=﹣1是分式方程的解.【解析】

(1)根据分式方程的原则求解即可,注意分式方程的增根.(2)根据分式方程的原则求解即可,注意分式方程的增根.【详解】解:(1)去分母得:3x﹣3=2x,解得:x=3,经检验x=3是分式方程的解;(2)去分母得:x2+4x+4﹣4=x2﹣4,解得:x=﹣1,经检验x=﹣1是分式方程的解.【点睛】本题主要考查分式方程的求解,特别注意一定不能忘记分式方程根的检验.21、操作与探索:见解析:发现与应用:10.【解析】

(1)根据网格作出相等的角即可得到反射四边形;(2)延长GH交PN的延长线与点A,证明△FPE≌△FPB,根据全等三角形的性质得到AB=2NP,再证明GA=GB,过点G作GK⊥NP于K,根据等腰三角形的性质求出KB=AB=4,再利用勾股定理求出GB的长,即可求出四边形EFGH的周长.【详解】(1)作图如下:(2)延长GH交PN的延长线与点A,过点G作GK⊥NP于K,∵∠1=∠2,∠1=∠5,∴∠2=∠5,又PF=PF,∠FPE=∠FPB,∴△FPE≌△FPB,∴EF=BF,EP=PB,同理AH=EH,NA=EN,∴AB=2NP=8,∵∠B=90°-∠5=90°-∠1,∠A=90°-∠3,∴∠A=∠B,∴GA=GB,则KB=AB=4,∴GB=∴四边形EFGH的周长为2GB=10.【点睛】此题主要考查矩形的性质,解题的关键是熟知全等三角形的判定与性质.22、(1)89;八(1);(2)八(1)班得分最高.【解析】

(1)用算术平均数的计算方法求得三个班的服装统一的平均数,找到动作准确的分数最高即可;(2)利用加权平均数分别计算三个班的得分后即可得解.【详解】解:(1)服装统一方面的平均分为:=89分;动作准确方面最有优势的是八(1)班;故答案为:89;八(1);(2)∵八(1)班的平均分为:=84.7分;八(2)班的平均分为:=82.8分;八(3)班的平均分为:=83.9分;∴得分最高的是八(1)班.【点睛】本题考查了平均数和加权平均数的计算.要注意,当所给数据有单位时,所求得的平均数与原数据的单位相同,不要漏单位.23、证明见解析.【解析】

利用SAS证明△AEB≌△CFD,再根据全等三角形的对应边相等即可得.【详解】解:∵四边形ABCD是平行四边形,∴AB∥DC,AB=DC,∴∠BAE=∠DCF,在△AEB和△C

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论