2024届江苏省宿迁宿豫区四校联考数学八年级下册期末联考试题含解析_第1页
2024届江苏省宿迁宿豫区四校联考数学八年级下册期末联考试题含解析_第2页
2024届江苏省宿迁宿豫区四校联考数学八年级下册期末联考试题含解析_第3页
2024届江苏省宿迁宿豫区四校联考数学八年级下册期末联考试题含解析_第4页
2024届江苏省宿迁宿豫区四校联考数学八年级下册期末联考试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江苏省宿迁宿豫区四校联考数学八年级下册期末联考试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图所示,将一个含30°角的直角三角板ABC绕点A旋转,使得点B,A,C′在同一直线上,则三角板ABC旋转的度数是()A.60° B.90° C.120° D.150°2.矩形与矩形如图放置,点共线,共线,连接,取的中点,连接,若,,则()A. B. C.2 D.3.如图,直线y=3x+6与x,y轴分别交于点A,B,以OB为底边在y轴右侧作等腰△OBC,将点C向左平移5个单位,使其对应点C′恰好落在直线AB上,则点C的坐标为()A.(3,3) B.(4,3) C.(﹣1,3) D.(3,4)4.计算3-2的结果是()A.9 B.-9 C. D.5.如图,点是矩形的对角线的中点,点是的中点.若,则四边形的周长是()A.7 B.8 C.9 D.106.如图,点A坐标为(3,0),B是y轴正半轴上一点,AB=5,则点B的坐标为()A.(4,0) B.(0,4) C.(0,5) D.(0,)7.下列二次根式中属于最简二次根式的是()A. B. C. D.8.如图,在平面直角坐标系中,点A的坐标为(0,3),△OAB沿x轴向右平移后得到△O′A′B′,点A的对应点在直线上一点,则点B与其对应点B′间的距离为A. B.3 C.4 D.59.下面各组数是三角形三边长,其中为直角三角形的是()A.8,12,15 B.5,6,8 C.8,15,17 D.10,15,2010.如图,在△ABC中,D、E分别为AC、BC的中点,AF平分∠CAB,交DE于点F,若DF=3,则AC的长为()A. B.3 C.6 D.9二、填空题(每小题3分,共24分)11.若正多边形的一个内角等于,则这个正多边形的边数是_______条.12.若是一元二次方程的两个实数根,则=__________.13.比较大小:________.14.如图,的对角线、相交于点,经过点,分别交、于点、,已知的面积是,则图中阴影部分的面积是_____.15.有一组勾股数,其中的两个分别是8和17,则第三个数是________16.如图,菱形ABCD的边长为8cm,∠B=45°,AE⊥BC于点E,则菱形ABCD的面积为_____cm2。17.计算所得的结果是______________。18.设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=_____.三、解答题(共66分)19.(10分)解不等式组并在数轴上表示出不等式组的解集.20.(6分)某服装公司招工广告承诺:熟练工人每月工资至少4000元.每天工作8小时,一个月工作25天.月工资底薪1000元,另加计件工资.加工1件A型服装计酬20元,加工1件B型服装计酬15元.在工作中发现一名熟练工加工2件A型服装和3件B型服装需7小时,加工1件A型服装和2件B型服装需4小时.(工人月工资=底薪+计件工资)(1)一名熟练工加工1件A型服装和1件B型服装各需要多少小时?(2)一段时间后,公司规定:“每名工人每月必须加工A,B两种型号的服装,且加工A型服装数量不少于B型服装的一半”.设一名熟练工人每月加工A型服装a件,工资总额为W元.请你运用所学知识判断该公司在执行规定后是否违背了广告承诺?21.(6分)解方程:(1)x2﹣4x=1(2)22.(8分)先化简,再求值,其中a=3,b=﹣1.23.(8分)如图,直线y=x+3与x轴、y轴分别相交于A、C两点,过点B(6,0),E(0,﹣6)的直线上有一点P,满足∠PCA=135°.(1)求证:四边形ACPB是平行四边形;(2)求直线BE的解析式及点P的坐标.24.(8分)为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉.经市场调查,甲种花卉的种植费用(元)与种植面积之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.(1)直接写出当和时,与的函数关系式;(2)广场上甲、乙两种花卉的种植面积共,若甲种花卉的种植面积不少于,且不超过乙种花卉种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植费用最少?最少总费用为多少元?25.(10分)在正方形ABCD中,P是对角线AC上的点,连接BP、DP.⑴求证:BP=DP;⑵如果AB=AP,求∠ABP的度数.26.(10分)甲、乙两辆汽车沿同一路线赶赴距出发地480千米的目的地,乙车比甲车晚出发2小时(从甲车出发时开始计时),图中折线OABC、线段DE分别表示甲、乙两车所行路程y(千米)与时间x(小时)之间的函数关系对应的图像线段AB表示甲出发不足2小时因故停车检修),请根据图像所提供的信息,解决如下问题:(1)求乙车所行路程y与时间x的函数关系式;(2)求两车在途中第二次相遇时,它们距出发地的路程;(3)乙车出发多长时间,两车在途中第一次相遇?(写出解题过程)

参考答案一、选择题(每小题3分,共30分)1、D【解析】试题分析:根据旋转角的定义,两对应边的夹角就是旋转角,即可求解.旋转角是∠CAC′=180°﹣30°=150°.故选D.考点:旋转的性质.2、A【解析】

如图,延长GH交AD于点M,先证明△AHM≌△FHG,从而可得AM=FG=1,HM=HG,进而得DM=AD-AM=2,继而根据勾股定理求出GM的长即可求得答案.【详解】如图,延长GH交AD于点M,∵四边形ABCD、CEFG是矩形,∴AD=BC=3,CG=EF=3,FG=CE=1,∠CGF=90°,∠ADC=90°,∴DG=CG-CD=3-1=2,∠ADG=90°=∠CGF,∴AD//FG,∴∠HAM=∠HFG,∠AMH=∠FGH,又AH=FH,∴△AHM≌△FHG,∴AM=FG=1,HM=HG,∴DM=AD-AM=3-1=2,∴GM=,∵GM=HM+HG,∴GH=,故选A.【点睛】本题考查了矩形的性质,勾股定理,全等三角形的判定与性质,正确添加辅助线,熟练掌握相关知识是解题的关键.3、B【解析】令x=0,y=6,∴B(0,6),∵等腰△OBC,∴点C在线段OB的垂直平分线上,∴设C(a,3),则C'(a-5,3),∴3=3(a-5)+6,解得a=4,∴C(4,3).故选B.点睛:掌握等腰三角形的性质、函数图像的平移.4、C【解析】

直接利用负指数幂的性质进而得出答案.【详解】解:.故选:C.【点睛】此题主要考查了负指数幂的性质,正确掌握负指数幂的性质是解题关键.5、C【解析】

根据三角形的中位线及直角三角形斜边上的中线等于斜边的一半即可求解.【详解】∵AB=3,BC=4,∴AC=,∵O点为AC中点,∴BO==2.5,又M是AD中点,∴MO是△ACD的中位线,故OM==1.5,∴四边形ABOM的周长为AB+BO+MO+AM=3+2.5+2+1.5=9,故选C.【点睛】此题主要考查矩形的性质,解题的关键是熟知直角三角形的性质及中位线定理的性质.6、B【解析】分析:根据勾股定理解答本题即可.详解:因为点A坐标为(3,0),B是y轴正半轴上一点,AB=5,

所以OB==4,

所以点B的坐标为(0,4),

故选B.点睛:本题考查了两点之间的距离,解本题的关键是根据勾股定理解答.7、A【解析】

利用最简二次根式定义判断即可.【详解】A、,是最简二次根式,符合题意;B、,不是最简二次根式,不符合题意;C、,不是最简二次根式,不合题意;D、,,不是最简二次根式,不合题意.故选A.【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.8、C【解析】试题分析:如图,连接AA′、BB′,∵点A的坐标为(0,3),△OAB沿x轴向右平移后得到△O′A′B′,∴点A′的纵坐标是3。又∵点A的对应点在直线上一点,∴,解得x=4。∴点A′的坐标是(4,3)。∴AA′=4。∴根据平移的性质知BB′=AA′=4。故选C。9、C【解析】试题分析:A.82+122≠152,故不是直角三角形,错误;B.52+62≠82,故不是直角三角形,错误;C.82+152=172,故是直角三角形,正确;D.102+152≠202,故不是直角三角形,错误.故选C.考点:勾股定理的逆定理.10、C【解析】

首先根据条件D、E分别是AC、BC的中点可得DE∥AB,再求出∠2=∠1,根据角平分线的定义推知∠1=∠1,则∠1=∠2,所以由等角对等边可得到DA=DF=AC.即可得出结论.【详解】解:如图,∵D、E分别为AC、BC的中点,∴DE∥AB,∴∠2=∠1.又∵AF平分∠CAB,∴∠1=∠1,∴∠1=∠2,∴AD=DF=1,∴AC=2AD=2.故选C.【点睛】本题考查了三角形中位线定理,等腰三角形的判定.三角形中位线的定理是:三角形的中位线平行于第三边且等于第三边的一半.二、填空题(每小题3分,共24分)11、12【解析】

首先根据求出外角度数,再利用外角和定理求出边数.【详解】∵正多边形的一个内角等于150°,∴它的外角是:180°−150°=30°,∴它的边数是:360°÷30°=12.故答案为:12.【点睛】此题考查多边形内角(和)与外角(和),解题关键在于掌握运算公式12、-1【解析】

根据根与系数的关系即可求出答案.【详解】由根与系数的关系可知:x1+x2=﹣1,x1x2=﹣2,∴x1+x2+x1x2=﹣1故答案为﹣1.【点睛】本题考查了根与系数的关系,解题的关键是熟练运用根与系数的关系,本题属于基础题型.13、<【解析】试题解析:∵∴∴14、【解析】

只要证明,可得,即可解决问题.【详解】四边形是平行四边形,,,,,,.故答案为:.【点睛】本题考查平行四边形的性质。全等三角形的判定和性质等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.15、1【解析】设第三个数是,①若为最长边,则,不是整数,不符合题意;②若17为最长边,则,三边是整数,能构成勾股数,符合题意,故答案为1.16、32【解析】

根据AE⊥BC,∠B=45°知△AEB为等腰直角三角形.在Rt△AEB中,根据勾股定理即可得出AE的长度,根据面积公式即可得出菱形ABCD的面积.【详解】四边形ABCD为菱形,则AB=BC=CD=DA=8cm,∵AE⊥BC且∠B=45°,∴△AEB为等腰直角三角形,∴AE=BE,在△AEB中,根据勾股定理可以得出+=,∴2=,∴AE====4,∴菱形ABCD的面积即为BC×AE=8×4=32.【点睛】本题目主要考查菱形的性质及面积公式,本题的解题关键在于通过勾股定理得出菱形的高AE的长度.17、1【解析】

由于二次根式的乘除运算是同级运算,从左到右依次计算即可.【详解】原式1.故答案为:1.【点睛】本题考查了二次根式的乘除法运算;由于后两项互为倒数,有些同学往往先将它们约分,从而得出结果为5的错误结论,需注意的是同级运算要从左到右依次计算.18、-1【解析】

根据点A在正比例函数y=mx上,进而计算m的值,再根据y的值随x值的增大而减小,来确定m的值.【详解】解∵正比例函数y=mx的图象经过点A(m,4),∴4=m1.∴m=±1∵y的值随x值的增大而减小∴m=﹣1故答案为﹣1【点睛】本题只要考查正比例函数的性质,关键在于根据函数的y的值随x值的增大而减小,来判断m的值.三、解答题(共66分)19、-1≤x<2【解析】分析:根据一元一次不等式求解方法,分别求解不等式,并在数轴上表示,重合的部分即为不等式组解集在数轴上的表示.本题解析:,解不等式①得,x≥-1,解不等式②得,x<2,在数轴上表示如下:所以不等式组的解集是−1≤x<2.不等式组的整数解为-1,0,1,2.20、(1)一名熟练工加工1件A型服装和1件B型服装各需要2小时和1小时;(2)该服装公司执行规定后违背了广告承诺.【解析】

(1)设熟练工加工1件A型服装需要x小时,加工1件B型服装需要y小时,根据“一名熟练工加工2件A型服装和3件B型服装需7小时,加工1件A型服装和2件B型服装需4小时”,列出方程组,即可解答.

(2)当一名熟练工一个月加工A型服装a件时,则还可以加工B型服装(25×8-2a)件.从而得到W=﹣10a+4000,再根据“加工A型服装数量不少于B型服装的一半”,得到a≥50,利用一次函数的性质,即可解答.【详解】解:(1)设熟练工加工1件A型服装需要x小时,加工1件B型服装需要y小时,由题意得:解得:答:熟练工加工1件A型服装需要2小时,加工1件B型服装需要1小时.

(2)当一名熟练工一个月加工A型服装a件时,则还可以加工B型服装(25×8﹣2a)件.∴W=20a+15(25×8﹣2a)+1000,∴W=﹣10a+4000,又∵解得:a≥50,∵﹣10<0,∴W随着a的增大则减小,∴当a=50时,W有最大值1.∵1<4000,∴该服装公司执行规定后违背了广告承诺.【点睛】考查一次函数的应用,二元一次方程组的应用,一元一次不等式的应用,读懂题目,列出方程是解题的关键.21、(1)x1=2+,x2=2﹣;(2)原方程无解.【解析】

(1)首先采用凑完全平方公式的原则,凑成完全平方式,在求解.(2)采用分式方程的求解方法求解即可.【详解】解:(1)∵x2﹣4x+4=1+4,∴(x﹣2)2=5,则x﹣2=±,∴x1=2+,x2=2﹣;(2)方程两边同时乘以(x+2)(x﹣2)得:(x﹣2)2﹣(x+2)(x﹣2)=16,解得:x=﹣2,检验:当x=﹣2时,(x+2)(x﹣2)=0,∴x=﹣2是原方程的增根,∴原方程无解.【点睛】本题主要考查分式方程和完全平方式方程的解法,关键在于凑和分式方程的分母的增根检验.22、,.【解析】

根据分式的减法和除法可以化简题目中的式子,然后将a、b的值代入化简后的式子即可解答本题.【详解】========,当a=3,b=﹣1时,原式==.【点睛】本题考查分式的混合运算,熟练掌握运算法则是解题关键.23、(1)详见解析;(2)点P的坐标为(9,3).【解析】

(1)利用一次函数图象上点的坐标特征可求出点A、C的坐标,进而可得出∠CAO=45°,结合∠PCA=135°可得出∠CAO+∠PCA=180°,利用“同旁内角互补,两直线平行”可得出AB∥CP,同理可求出∠ABE=45°=∠CAO,利用“内错角相等,两直线平行”可得出AC∥BP,再利用平行四边形的判定定理可证出四边形ACPB为平行四边形;

(2)由点B、E的坐标,利用待定系数法可求出直线BE的解析式,由AB∥CP可得出点P的纵坐标,再利用一次函数图象上点的坐标特征即可求出点P的坐标.【详解】(1)∵直线y=x+3与x轴、y轴分别相交于A、C两点,∴点A的坐标为(﹣3,0),点C的坐标为(0,3),∴OA=OC.∵∠AOC=90°,∴∠CAO=45°.∵∠PCA=135°,∴∠CAO+∠PCA=180°,∴AB∥CP.∵点B的坐标为(1,0),点E的坐标为(0,﹣1),∴OB=OE.∵∠BOE=90°,∴∠OBE=45°,∴∠CAO=∠ABE=45°,∴AC∥BP,∴四边形ACPB为平行四边形.(2)设直线BE的解析式为y=kx+b(k≠0),将B(1,0)、E(0,﹣1)代入y=kx+b,得:,解得:∴直线BE的解析式为y=x﹣1.∵AB∥CP,∴点P的纵坐标是3,∴点P的坐标为(9,3).【点睛】本题考查了平行线的判定、平行四边形的判定、等腰三角形的性质、待定系数法求出一次函数解析式以及一次函数图象上点的坐标特征,解题的关键是:(1)利用平行线的判定定理找出AB∥CP、AC∥BP;(2)根据点的坐标,利用待定系数法求出直线BE的解析式.24、(1);(2)应分配甲种花卉种植面积为,乙种花卉种植面积为,才能使种植总费用最少,最少总费用为119000元.【解析】分析:(1)由图可知y与x的函数关系式是分段函数,待定系数法求解析式即可.(2)设甲种花卉种植为am2,则乙种花卉种植(12000-a)m2,根据实际意义可以确定a的范围,结合种植费用y(元)与种植面积x(m2)之间的函数关系可以分类讨论最少费用为多少.详解:(1)(2)设甲种花卉种植面积为,则乙种花卉种植面积为..当时,.当时,元.当时,.当时,元.,当时,总费用最低,最低为119000元.此时乙种花卉种植面积为.答:应分配甲种花卉种植面积为,乙种花卉种植面积为,才能使种植总费用最少,最少总费用为119000元.点睛:本题是看图写函数解析式并利用解析式解决问题的题目,考查分段函数的表达和分类讨论的数学思想.25、(1)证明见解析;(2)67.5°.【解析】

(1)证明△ABP≌△ADP,可得BP=DP;

(2)证得∠ABP=∠APB,由∠BAP=45°可得出∠ABP=67.5°.【详解】证明:(1)∵四边形ABC是正方形,

∴AD=AB,∠DAP=∠BAP=45°,

在△ABP和△ADP中∴△ABP≌△ADP(SAS),

∴BP=DP,

(2)∵AB=AP,

∴∠ABP=∠APB,

又∵∠BAP=45°,

∴∠ABP=67.5°.【点睛】本题考查正方形的性质、全等三角形的判定和性质,解题的关键

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论