版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
陕西省商洛市名校2024届八年级数学第二学期期末统考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图所示,将一个含30°角的直角三角板ABC绕点A旋转,使得点B,A,C′在同一直线上,则三角板ABC旋转的度数是()A.60° B.90° C.120° D.150°2.某校八年级(2)班第一组女生的体重(单位:):35,36,36,42,42,42,45,则这组数据的众数为()A.45 B.42 C.36 D.353.在△ABC中,D、E分别是BC、AC中点,BF平分∠ABC.交DE于点F.AB=8,BC=6,则EF的长为()A.1 B.2 C.3 D.44.如图,▱ABCD中,点O为对角线AC、BD的交点,下列结论错误的是()A.AC=BD B.AB//DCC.BO=DO D.∠ABC=∠CDA5.在函数的图象上的点是()A.(-2,12) B.(2,-12) C.(-4,-6) D.(4,-6)6.某交警在一个路口统计某时间段来往车辆的车速情况如下表,则上述车速的中位数和众数分别是()A.50,8 B.50,50 C.49,50 D.49,87.化简的结果是()A.-a B.-1 C.a D.18.已知整数x满足﹣5≤x≤5,y1=x+1,y2=2x+4,对于任意一个x,m都取y1、y2中的最小值,则m的最大值是()A.﹣4B.﹣6C.14D.69.下列各式中正确的是A. B.C. D.10.下列几组数中,能作为直角三角形三边长度的是()A.6,9,10 B.5,12,17 C.4,5,6 D.1,,11.下列运算正确的是()A. B.C. D.12.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是().A. B.C. D.二、填空题(每题4分,共24分)13.﹣﹣×+=.14.已知一次函数与反比例函数中,函数、与自变量x的部分对应值分别如表1.表2所示:则关于x的不等式的解集是__________。15.已知一组数据3,5,9,10,x,12的众数是9,则这组数据的平均数是___________.16.函数中,自变量的取值范围是_____.17.在●〇●〇〇●〇〇〇●〇〇〇〇●〇〇〇〇〇中,空心圈“〇”出现的频率是_____.18.如图,已知菱形的面积为24,正方形的面积为18,则菱形的边长是__________.三、解答题(共78分)19.(8分)解一元二次方程.(1)(2)20.(8分)八年级下册教材第69页习题14:四边形ABCD是正方形,点E是边BC的中点,∠AEF=90°,且EF交正方形外角的平分线CF于点F.求证:AE=EF.这道题对大多数同学来说,印象深刻数学课代表在做完这题后,她把这题稍作改动,如图,四边形ABCD是正方形,点E是边BC的三等分点,∠AEF=90°,且EF交正方形外角的平分线CF于点F,那么AE=EF还成立吗?如果成立,给予证明,如果不成立,请说明理由.21.(8分)解不等式组:,并将不等式组的解集在所给数轴上表示出来.22.(10分)如图,在平面直角坐标系中,两点分别是轴和轴正半轴上两个动点,以三点为顶点的矩形的面积为24,反比例函数(为常数且)的图象与矩形的两边分别交于点.(1)若且点的横坐标为3.①点的坐标为,点的坐标为(不需写过程,直接写出结果);②在轴上是否存在点,使的周长最小?若存在,请求出的周长最小值;若不存在,请说明理由.(2)连接,在点的运动过程中,的面积会发生变化吗?若变化,请说明理由,若不变,请用含的代数式表示出的面积.23.(10分)如图,在平面直角坐标系中,的三个顶点分别是、、.(1)画出关于点成中心对称的△;平移,若点的对应点的坐标为,画出平移后对应的△;(2)△和△关于某一点成中心对称,则对称中心的坐标为.24.(10分)如图,直线y=x﹣3交x轴于A,交y轴于B,(1)求A,B的坐标和AB的长(直接写出答案);(2)点C是y轴上一点,若AC=BC,求点C的坐标;(3)点D是x轴上一点,∠BAO=2∠DBO,求点D的坐标.25.(12分)(1)如图(1),已知:正方形ABCD的对角线交于点O,E是AC上的一动点,过点A作AG⊥BE于G,交BD于F.求证:OE=OF.(2)在(1)的条件下,若E点在AC的延长线上,以上结论是否成立,为什么?26.一个二次函数的图象经过(﹣1,﹣1),(0,0),(1,9)三点(1)求这个二次函数的解析式.(2)若另外三点(x1,21),(x2,21),(x1+x2,n)也在该二次函数图象上,求n的值.
参考答案一、选择题(每题4分,共48分)1、D【解析】试题分析:根据旋转角的定义,两对应边的夹角就是旋转角,即可求解.旋转角是∠CAC′=180°﹣30°=150°.故选D.考点:旋转的性质.2、B【解析】
出现次数最多的数是1.故众数是1.【详解】解:出现次数最多的数是1.故众数是1.故答案:B【点睛】注意众数是指一组数据中出现次数最多的数据,它反映了一组数据的多数水平,一组数据的众数可能不是唯一的.3、A【解析】
利用中位线定理,得到DE∥AB,根据平行线的性质,可得∠EDC=∠ABC,再利用角平分线的性质和三角形内角外角的关系,得到DF=DB,进而求出DF的长,易求EF的长度.【详解】∵在△ABC中,D、E分别是BC、AC的中点,AB=8,∴DE∥AB,DE=AB=3.∴∠EDC=∠ABC.∵BF平分∠ABC,∴∠EDC=2∠FBD.∵在△BDF中,∠EDC=∠FBD+∠BFD,∴∠DBF=∠DFB,∴FD=BD=BC=×6=2.∴FE=DE-DF=3-2=3.故选A.【点睛】本题考查了三角形中位线定理和等腰三角形的判定于性质.三角形的中位线平行于第三边,当出现角平分线,平行线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.4、A【解析】
根据平行四边形的性质即可判断.平行四边形的对边平行且相等,对角相等,对角线互相平分。【详解】解:∵四边形ABCD是平行四边形,
∴AB∥CD,OB=OD,∠ABC=∠ADC,
∴B、C、D正确,A错误。
故选:A.【点睛】本题考查平行四边形的性质、记住平行四边形的性质是解题的关键,属于中考基础题.5、C【解析】
根据横坐标与纵坐标的乘积为24即可判断.【详解】解:∵函数的图象上的点的横坐标与纵坐标的乘积为24,又∵-2×12=-24,2×(-12)=-24,-4×(-6)=24,4×(-6)=-24,∴(-4,-6)在的图象上,故选:C.【点睛】本题考查反比例函数图象上的点的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.6、B【解析】
把这组数据按照从小到大的顺序排列,第10、11个数的平均数是中位数,在这组数据中出现次数最多的是50,得到这组数据的众数.【详解】解:要求一组数据的中位数,把这组数据按照从小到大的顺序排列,第10、11两个数的平均数是50,所以中位数是50,在这组数据中出现次数最多的是50,即众数是50,故选:B.【点睛】本题考查一组数据的中位数和众数,在求中位数时,首先要把这列数字按照从小到大或从大到小排列,找出中间一个数字或中间两个数字的平均数即为所求.7、C【解析】
先把分子进行因式分解,再进行约分,即可求出答案.【详解】解:原式=,故选C.【点睛】本题考查了约分,解题的关键是把分式的分子进行因式分解,是一道基础题,用到的知识点是提公因式法.8、D【解析】
根据题意可得知﹣5≤x≤5,当x=5时,m取最大值,将x=5代入即可得出结论.【详解】解:已知对于任意一个x,m都取y1,y2中的最小值,且求m得最大值,因为y1,y2均是递增函数,所以在x=5时,m取最大值,即m取x=5时,y1,y2中较小的一个,是y1=6.故选D.【点睛】本题考察直线图像的综合运用,能够读懂题意确定m是解题关键.9、D【解析】
原式利用平方根、立方根定义计算即可求出值.【详解】A.原式=3,不符合题意;B.原式=|-3|=3,不符合题意;C.原式不能化简,不符合题意;D.原式=2-=,符合题意,故选D.【点睛】本题考查了立方根,以及算术平方根,熟练掌握各自的性质是解题的关键.10、D【解析】
要求证是否为直角三角形,利用勾股定理的逆定理即可.这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【详解】解:A、,故不是直角三角形,故错误;B、,故不是直角三角形,故错误;C、,故不是直角三角形,故错误;D、故是直角三角形,故正确.故选:D.【点睛】本题考查的是勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.11、D【解析】
试题分析:A、,故A选项错误;B、,故B选项错误;C、,故C选项错误;D、,故D选项正确,故选D.考点:约分12、D【解析】
由图易知两条直线分别经过(1,1)、(0,-1)两点和(0,2)、(1,1)两点,设出两个函数的解析式,然后利用待定系数法求出解析式,再根据所求的解析式写出对应的二元一次方程,然后组成方程组便可解答此题.【详解】由图知,设经过(1,1)、(0,-1)的直线解析式为y=ax+b(a≠0).将(1,1)、(0,-1)两点坐标代入解析式中,解得故过(1,1)、(0,-1)的直线解析式y=2x-1,对应的二元一次方程为2x-y-1=0.设经过(0,2)、(1,1)的直线解析式为y=kx+h(k≠0).将(0,2)、(1,1)两点代入解析式中,解得故过(0,2)、(1,1)的直线解析式为y=-x+2,对应的二元一次方程为x+y-2=0.因此两个函数所对应的二元一次方程组是故选D【点睛】此题考查一次函数与二元一次方程(组),解题关键在于要写出两个函数所对应的二元一次方程组,需先求出两个函数的解析式.二、填空题(每题4分,共24分)13、3+.【解析】试题分析:先进行二次根式的乘法运算,然后把各二次根式化为最简二次根式即可.解:原式=4﹣﹣+2=3﹣+2=3+.故答案为3+.14、或【解析】
根据表格中的数据可以求得一次函数与反比例函数的解析式,从而可以得到不等式的解集,本题得以解决.【详解】解:∵点(-4,-1)和点(2,3)在一次函数y1=k1x+b的图象上,
∴,得,
即一次函数y1=x+3,
∵点(1,4)在反比例函数的图象上,
,得k2=4,
即反比例函数,
令x+3=,得x1=1,x2=-4,
∴不等式的解集是x>1或-4<x<2,
故答案为:x>1或-4<x<2.【点睛】本题考查反比例函数的性质、一次函数的性质,解答本题的关键是明确题意,利用反比例函数的性质和一次函数的性质解答.15、1.【解析】试题分析::∵数据3,5,9,10,x,12的众数是9,∴x=9,∴这组数据的平均数是(3+5+9+10+9+12)÷6=1.故答案是1.考点:1.算术平均数2.众数.16、【解析】
根据被开方式是非负数列式求解即可.【详解】依题意,得,解得:,故答案为:.【点睛】本题考查了函数自变量的取值范围,函数有意义时字母的取值范围一般从几个方面考虑:①当函数解析式是整式时,字母可取全体实数;②当函数解析式是分式时,考虑分式的分母不能为0;③当函数解析式是二次根式时,被开方数为非负数.④对于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要保证实际问题有意义.17、0.1【解析】
用空心圈出现的频数除以圆圈的总数即可求解.【详解】解:由图可得,总共有20个圆,出现空心圆的频数是15,频率是15÷20=0.1.故答案是:0.1.【点睛】考查了频率的计算公式:频率=频数÷数据总数,是需要识记的内容.18、1【解析】
根据正方形的面积可用对角线进行计算解答即可.【详解】解:如图,连接AC、BD,相交于点O,∵正方形AECF的面积为18,∴AC=,∴AO=3,∵菱形ABCD的面积为24,∴BD=,∴BO=4,∴在Rt△AOB中,.故答案为:1.【点睛】此题考查正方形的性质,关键是根据正方形和菱形的面积进行解答.三、解答题(共78分)19、(1)x1=3,x2=6;(2)x1=2+,x2=2-.【解析】
(1)利用因式分解法即可求解;(2)利用配方法解方程即可求解.【详解】(1)∴∴∴,,解得:x1=3,x2=6;(2)∴∴,∴,解得x1=2+,x2=2-.【点睛】此题分别考查了一元二次方程的几种解法,解题的关键是根据不同的方程的形式选择最佳方法解决问题.20、成立,理由见解析.【解析】
取AB的三等分点,连接GE,由点E是边BC的三等分点,得到BE=BG,根据正方形的性质得到AG=EC,根据全等三角形的性质即可得到结论.【详解】证明:取AB的三等分点,连接GE,∵点E是边BC的三等分点,∴BE=BG,∵四边形ABCD是正方形,∴AG=EC,∵△EBG为等腰直角三角形,可知∠AGE=135°,∵∠AEF=90°,∠BEA+∠FEC=90°,∠BEA+∠BAE=90°,∴∠BAE=∠FEC.∴△AGE≌△ECF(ASA),∴AE=EF.【点睛】此题考查正方形的性质,三角形全等的判定与性质,角平分线的性质等知识点,注意结合图形,灵活作出辅助线解决问题.21、,见解析【解析】
求出每个不等式的解集,根据找不等式组解集的规律找出即可.【详解】解:∵解不等式①得:x≤4,
解不等式②得:x<2,
∴原不等式组的解集为x<2,
不等式组的解集在数轴上表示如下:
.【点睛】此题考查解一元一次不等式组,在数轴上表示不等式组的解集,解题关键是能根据不等式得解集找出不等式组的解集.22、(1)①点坐标为,点坐标为;②存在,周长;(2)不变,的面积为【解析】
(1)①求出点E的坐标,得出C点的纵坐标,根据面积为24即可求出C的坐标,得出F点横坐标即可求解;②作点E关于x轴的对称点G,连接GF,与x轴的交点为p,此时的周长最小(2)先算出三角形与三角形的面积,再求出三角形的面积即可.【详解】(1)①点坐标为,点坐标为;②作点E关于x轴的对称点G,连接GF,求与x轴的交点为p,此时的周长最小由①得EF=由对称可得EP=PH,由H(3,-4)F(6,2)可得HF=3△PEF=EP+PF+EF=FH+EF=(2)不变,求出三角形与三角形的面积为求出三角形的面积为求出三角形的面积为设E位(a,),则S△AEO=,同理可得S△AFB=,∵矩形的面积为24F(,),C(,)S△CEF=S=24--k=.【点睛】本题考查的是函数与矩形的综合运用,熟练掌握三角形和对称是解题的关键.23、(1)画图见解析;(2)(2,-1).【解析】试题分析:(1)、根据网格结构找出点A、B关于点C成中心对称的点A1、B1的位置,再与点A顺次连接即可;根据网格结构找出点A、B、C平移后的对应点A2、B2、C2的位置,然后顺次连接即可;(2)、根据中心对称的性质,连接两组对应点的交点即为对称中心.试题解析:(1)、△A1B1C如图所示,△A2B2C2如图所示;(2)、如图,对称中心为(2,﹣1).考点:(1)、作图-旋转变换;(2)、作图-平移变换.24、(1)点A为(4,0),点B为(0,-3),AB=5;(2)(0,);(3)点D坐标为(-1,0)或(1,0).【解析】
(1)设x=0,y=0,可以求出A,B坐标;、(2)设OC=x,则BC=BO+OC=x+3,即AC=BC=x+3,由勾股定理得;(3),得,,.【详解】(1)点A为(4,0),点B为(0,-3),AB=5(2)设OC=x,则BC=BO+OC=x+3即AC=BC=x+3在Rt△AOC中,【点睛】本题考核知识点:一次函数的应用.解题关键点:此题比较综合,要注意掌握数形结合思想.25、(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度外卖配送服务承包合同(含食品安全)
- 2025年度个人独院买卖合同(含租赁权)协议书
- 课题申报参考:民族基层地区检察听证实质化改革路径构建研究
- 二零二五年度智能停车场租赁与维护一体化合同
- 2025年个人担保居间合同标准实施范本2篇
- 二零二五年度女方违反离婚协议财产分割及房产过户合同4篇
- 2025年度个人户外装备分期购买合同
- 湖北省黄冈市重点中学高三上学期期末考试语文试题(含答案)
- 2025版美容院美容师团队建设聘用标准合同4篇
- 二零二五年度牧业产业扶贫项目承包合同范本3篇
- 桥本甲状腺炎-90天治疗方案
- 《量化交易之门》连载27:风险的角度谈收益MAR和夏普比率
- (2024年)安全注射培训课件
- 2024版《建设工程开工、停工、复工安全管理台账表格(流程图、申请表、报审表、考核表、通知单等)》模版
- 2024年广州市高三一模普通高中毕业班高三综合测试一 物理试卷(含答案)
- 部编版《道德与法治》六年级下册教材分析万永霞
- 粘液腺肺癌病理报告
- 酒店人防管理制度
- 油田酸化工艺技术
- 上海高考英语词汇手册列表
- 移动商务内容运营(吴洪贵)任务五 其他内容类型的生产
评论
0/150
提交评论