2024年广东省汕头市潮南区数学八年级下册期末调研试题含解析_第1页
2024年广东省汕头市潮南区数学八年级下册期末调研试题含解析_第2页
2024年广东省汕头市潮南区数学八年级下册期末调研试题含解析_第3页
2024年广东省汕头市潮南区数学八年级下册期末调研试题含解析_第4页
2024年广东省汕头市潮南区数学八年级下册期末调研试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年广东省汕头市潮南区数学八年级下册期末调研试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,在▱ABCD中,点E为AB的中点,F为BC上任意一点,把△BEF沿直线EF翻折,点B的对应点B′落在对角线AC上,则与∠FEB一定相等的角(不含∠FEB)有()A.2个 B.3个 C.4个 D.5个2.下列图形是中心对称图形,但不是轴对称图形的是(

)A. B. C. D.3.小强和小华两人玩“剪刀、石头、布”游戏,随机出手一次,则两人平局的概率为()A. B. C. D.4.一次统计八(2)班若干名学生每分跳绳次数的频数分布直方图的次数(结果精确到个位)是()A.数据不全无法计算 B.103C.104 D.1055.计算的结果是()A.0 B. C. D.16.已知a>b,若c是任意实数,则下列不等式中总是成立的是()A.a-c>b-c B.a+c<b+c C.ac>bc D.ac<bc7.某校八年级(3)班体训队员的身高(单位:cm)如下:169,165,166,164,169,167,166,169,166,165,获得这组数据方法是()A.直接观察 B.查阅文献资料 C.互联网查询 D.测量8.下列分解因式,正确的是()A. B.C. D.9.某商场要招聘电脑收银员,应聘者需通过计算机、语言和商品知识三项测试,小明的三项成绩(百分制)依次是70分,50分,80分,其中计算算机成绩占50%,语言成绩占30%,商品知识成绩占20%.则小明的最终成绩是()A.66分 B.68分 C.70分 D.80分10.若一个直角三角形的两边长为12、13,则第三边长为()A.5 B.17 C.5或17 D.5或31311.在同一直角坐标系中,若直线y=kx+3与直线y=-2x+b平行,则()A.k=-2,b≠3B.k=-2,b=3C.k≠-2,b≠3D.k≠-2,b=312.以下问题,不适合用普查的是()A.了解全班同学每周阅读的时间 B.亚航客机飞行前的安全检测C.了解全市中小学生每天的零花钱 D.某企业招聘部门经理,对应聘人员面试二、填空题(每题4分,共24分)13.如图,矩形ABCD中,,,CE是的平分线与边AB的交点,则BE的长为______.14.若,则________.15.若某多边形有5条对角线,则该多边形内角和为_____.16.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于D,若CD=BD,点D到边AB的距离为6,则BC的长是____.17.如图,将一朵小花放置在平面直角坐标系中第三象限内的甲位置,先将它绕原点O旋转180∘到乙位置,再将它向下平移2个单位长到丙位置,则小花顶点A在丙位置中的对应点A'的坐标为______18.分解因式:.三、解答题(共78分)19.(8分)已知直线经过点M(-2,1),求此直线与x轴,y轴的交点坐标.20.(8分)计算(1)()-()(2)(2+3)(2-3)21.(8分)某校为提高学生的汉字书写能力,开展了“汉字听写”大赛.七、八年级学生参加比赛,为了解这两个年级参加比赛学生的成绩情况,从中各随机抽取10名学生的成绩,数据如下(单位:分):七年级889490948494999499100八年级84938894939893989799整理数据:按如下分数段整理数据并补全表格:成绩x人数年级七年级1153八年级44分析数据:补全下列表格中的统计量:统计量年级平均数中位数众数方差七年级93.69424.2八年级93.79320.4得出结论:你认为哪个年级学生“汉字听写”大赛的成绩比较好?并说明理由.(至少从两个不同的角度说明推断的合理性)22.(10分)用适当的方法解下列方程:(1)5x2=4x(2)(x+1)(3x﹣1)=023.(10分)某车间加工1200个零件后,采用新工艺,工效提升了20%,这样加工同样多的零件就少用10h,采用新工艺前、后每小时分别加工多少个零件?24.(10分)某县为发展教育事业,加强对教育经费投入,2012年投入3000万元,2014年投入3630万元,(1)求该县教育经费的年平均增长率;(2)若增长率保持不变,预计2015年该县教育经费是多少.25.(12分)如图,在中,点在边上,点在边的延长线上,且,与交于点.(1)求证:;(2)若点是的中点,,求边的长.26.如图,平行四边形的顶点分别在轴和轴上,顶点在反比例函数的图象上,求平行四边形的面积.

参考答案一、选择题(每题4分,共48分)1、C【解析】

由翻折的性质可知,EB=EB',由E为AB的中点,得到EA=EB',根据三角形外角等于不相邻的两内角之和,找到与∠FEB相等的角,再根据AB∥CD,也可得到∠FEB=∠ACD.【详解】解:由翻折的性质可知:EB=EB',∠FEB=∠FEB';∵E为AB的中点,∴AE=BE=EB',∴∠EAB'=∠EB'A,∵∠BEB'=∠EAB'+∠EB'A,∴2∠FEB=2∠EAB=2∠EB'A,∴∠FEB=∠EAB=∠EB'A,∵AB∥CD,∴∠B'AE=∠ACD,∴∠FEB=∠ACD,∴与∠FEB相等的角有∠FEB',∠EAB',∠EB'A,∠ACD,∴故选C.【点睛】此题考查翻折的性质,EA=EB'是正确解答此题的关键2、A【解析】

根据轴对称图形和中心对称图形的定义解答即可.【详解】解:A.是中心对称图形,不是轴对称图形,故A符合题意;B.是中心对称图形,也是轴对称图形,故B不符合题意;C.是中心对称图形,也是轴对称图形,故C不符合题意;D.是轴对称图形,不是中心对称图形,故D不合题意.故选A.【点睛】本题考查了中心对称和轴对称图形的定义.解题的关键是掌握中心对称和轴对称图形的定义.3、B【解析】试题解析:小强和小华玩“石头、剪刀、布”游戏,所有可能出现的结果列表如下:小强小华石头剪刀布石头(石头,石头)(石头,剪刀)(石头,布)剪刀(剪刀,石头)(剪刀,剪刀)(剪刀,布)布(布,石头)(布,剪刀)(布,布)∵由表格可知,共有9种等可能情况.其中平局的有3种:(石头,石头)、(剪刀,剪刀)、(布,布).∴小明和小颖平局的概率为:.故选B.考点:概率公式.4、C【解析】

根据频数分布直方图可知本次随机抽查的学生人数为:2+4+6+3=15(人);然后取每一小组中间的数值近似地作为该组内每位学生的每分钟跳绳次数,再用加权平均数求解即可.【详解】解:根据频数分布直方图可知本次随机抽查的学生人数为:2+4+6+3=15(人);所以这若干名学生每分钟跳绳次数的平均数=(62×2+87×4+112×6+137×2)÷15≈103.67≈104,故选C.【点睛】本题考查学生读取频数分布直方图的能力和利用统计图获取信息的能力.对此类问题,必须认真观察题目所给的统计图并认真的思考分析,才能作出正确的判断,从而解决问题.5、B【解析】分析:首先进行通分,然后根据同分母的分式加减法计算法则即可求出答案.详解:原式=,故选B.点睛:本题主要考查的是分式的加减法计算,属于基础题型.学会通分是解决这个问题的关键.6、A【解析】

根据不等式的性质,应用排除法分别将各选项分析求解即可求得答案.【详解】A、∵a>b,c是任意实数,∴a-c>b-c,故本选项正确;B、∵a>b,c是任意实数,∴a+c>b+c,故本选项错误;C、当a>b,c<0时,ac>bc,而此题c是任意实数,故本选项错误;D、当a>b,c>0时,ac<bc,而此题c是任意实数,故本选项错误.故选A.7、D【解析】本题考查的是调查收集数据的过程与方法根据八某校年级(3)班体训队员的身高即可判断获得这组数据的方法.由题意得,获得这组数据方法是测量,故选D.思路拓展:解答本题的关键是掌握好调查收集数据的过程与方法.8、B【解析】

把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作分解因式.据此作答.【详解】A.和因式分解正好相反,故不是分解因式;B.是分解因式;C.结果中含有和的形式,故不是分解因式;D.x2−4y2=(x+2y)(x−2y),解答错误.故选B.【点睛】本题考查的知识点是因式分解定义和十字相乘法分解因式,解题关键是注意:(1)因式分解的是多项式,分解的结果是积的形式.(2)因式分解一定要彻底,直到不能再分解为止.9、A【解析】

根据加权平均数的定义列式计算可得.【详解】解:小明最终的成绩是70×50%+50×30%+80×20%=66(分),故选:A.【点睛】本题考查了加权平均数的计算,加权平均数:(其中w1、w2、……、wn分别为x1、x2、……、xn的权).数据的权能反映数据的相对“重要程度”,对于同样的一组数据,若权重不同,则加权平均数很可能是不同的.10、D【解析】

根据告诉的两边长,利用勾股定理求出第三边即可.注意13,12可能是两条直角边也可能是一斜边和一直角边,所以得分两种情况讨论.【详解】当12,13为两条直角边时,第三边=122+13当13,12分别是斜边和一直角边时,第三边=132-12故选D.【点睛】本题考查了勾股定理的知识,题目中渗透着分类讨论的数学思想.11、A【解析】试题解析:∵直线y=kx+1与直线y=-2x+b平行,

∴k=-2,b≠1.

故选A.12、C【解析】

根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【详解】A、了解全班同学每周阅读的时间适合普查,故A不符合题意;B、亚航客机飞行前的安全检测是重要的调查,故B不符合题意;C、了解全市中小学生每天的零花钱适合抽要调查,故C符合题意;D、某企业招聘部门经理,对应聘人员面试,适合普查,故D不符合题意;故选C.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.二、填空题(每题4分,共24分)13、

【解析】分析:作于由≌,推出,,,设,则,在中,根据,构建方程求出x即可;详解:作于H.四边形ABCD是矩形,,,在和中,,≌,,,,设,则,在中,,,,,故答案为:.点睛:本题考查矩形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.14、【解析】

由,得到a=b,代入所求的代数式,即可解决问题.【详解】∵,∴a=b,∴,故答案为:.【点睛】该题主要考查了分式的化简与求值问题;解题的关键是将所给的条件或所要计算、求值的代数式,灵活变形、合理运算,求值.15、540°.【解析】

根据多边形对角线的条数求出多边形的边数,再根据多边形的内角和公式求出即可.【详解】设多边形的边数为n,∵多边形有5条对角线,∴=5,解得:n=5或n=﹣2(舍去),即多边形是五边形,所以多边形的内角和为(5﹣2)×180°=540°,故答案为:540°.【点睛】本题考查了多边形的对角线和多边形的内角,能正确求出多边形的边数是解此题的关键,注意:边数为n的多边形的对角线的条数是,边数为n的多边形的内角和=(n-2)×180°.16、2【解析】

过D作DE⊥AB于E,则DE=1,根据角平分线性质求出CD=DE=1,求出BD即可.【详解】过D作DE⊥AB于E.∵点D到边AB的距离为1,∴DE=1.∵∠C=90°,AD平分∠BAC,DE⊥AB,∴CD=DE=1.∵CDDB,∴DB=12,∴BC=1+12=2.故答案为2.【点睛】本题考查了角平分线性质的应用,注意:角平分线上的点到这个角的两边的距离相等.17、(3,-1)【解析】根据图示可知A点坐标为(-3,-1),根据绕原点O旋转180°横纵坐标互为相反数∴旋转后得到的坐标为(3,1),根据平移“上加下减”原则,∴向下平移2个单位得到的坐标为(3,-1),18、.【解析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,先提取公因式后继续应用平方差公式分解即可:.考点:提公因式法和应用公式法因式分解.三、解答题(共78分)19、(0,-3)【解析】

将点M(-2,1)代入直线y=kx-3,求出k的值,然后让横坐标为0,即可求出与y轴的交点.让纵坐标为0,即可求出与x轴的交点.【详解】∵y=kx-3过(-2,1),∴1=-2k-3,∴k=-2,∴y=-2x-3,∵令y=0时,x=,∴直线与x轴交点为(,0),∵令x=0时,y=-3,∴直线与y轴交点为(0,-3).【点睛】本题考查了待定系数法求一次函数解析式、一次函数图象上点的坐标特征,熟知函数与y轴的交点的横坐标为0,函数与x轴的交点的纵坐标为0是关键.20、(1);(2)-1.【解析】

(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用平方差公式计算.【详解】(1)原式==;(2)原式=8-9=-1.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.21、整理数据:八年级段1人,段1人;分析数据:七年级众数94,八年级中位数93.5;得出结论:八年级学生大赛的成绩比较好,见解析.【解析】

整理数据:根据八年级抽取10名学生的成绩,可得;

分析数据:根据题目给出的数据,利用众数的定义,中位数的定义求出即可;得出结论:根据给出的平均数和方差分别进行分析,即可得出答案.【详解】解:整理数据:八年级段1人,段1人分析数据,由题意,可知94分出现次数最多是4次,所以七年级10名学生的成绩众数是94,

将八年级10名学生的成绩从小到大排列为:84,88,93,93,93,94,97,98,98,99,

中间两个数分别是93,94,(93+94)÷2=93.5,

所以八年级10名学生的成绩中位数是93.5;得出结论:认为八年级学生大赛的成绩比较好.理由如下:八年级学生大赛成绩的平均数较高,表示八年级学生大赛的成绩较好;八年级学生大赛成绩的方差小,表示八年级学生成绩比较集中,整体水平较好.故答案为:整理数据:八年级段1人,段1人;分析数据:七年级众数94,八年级中位数93.5;得出结论:八年级学生大赛的成绩比较好,见解析.【点睛】本题考查平均数、中位数、众数、方差的意义及求法,理解各个统计量的意义,明确各个统计量的特点是解决问题的前提和关键.22、(1)x1=0,x2=;(2)x1=﹣1,x2=.【解析】

(1)先移项,然后利用因式分解法解方程;

(2)利用因式分解法解方程.【详解】解:(1)由原方程,得x(5x﹣4)=0,则x=0或5x﹣4=0,解得x1=0,x2=;(2)(x+1)(3x﹣1)=0,x+1=0或3x﹣1=0,x1=﹣1,x2=.【点睛】本题考查了因式分解法解一元二次方程.因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题(数学转化思想).23、采用新工艺前每时加工20个零件,采用新工艺后每时加工1个零件.【解析】

设采用新工艺前每时加工x个零件,那么采用新工艺后每时加工1.2x个零件,根据时间=零件数÷每小时加工零件数,由等量关系:加工同样多的零件1200个少用10h,可列方程求解.【详解】设采用新工艺前每时加工x个零件,则采用新工艺后每时加工1.2x个零件,依题意有,解得x=20,经检验:x=20是原分式方程的解,且符合题意,则1.2x=1.答:采用新工艺前每时加工20个零件,采用新工艺后每时加工1个零件.【点睛

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论