浙江省绍兴市诸暨市暨阳初级中学2024届八年级下册数学期末教学质量检测模拟试题含解析_第1页
浙江省绍兴市诸暨市暨阳初级中学2024届八年级下册数学期末教学质量检测模拟试题含解析_第2页
浙江省绍兴市诸暨市暨阳初级中学2024届八年级下册数学期末教学质量检测模拟试题含解析_第3页
浙江省绍兴市诸暨市暨阳初级中学2024届八年级下册数学期末教学质量检测模拟试题含解析_第4页
浙江省绍兴市诸暨市暨阳初级中学2024届八年级下册数学期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省绍兴市诸暨市暨阳初级中学2024届八年级下册数学期末教学质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.方程x(x﹣1)=0的根是()A.x=0 B.x=1 C.x1=0,x2=1 D.x1=0,x2=﹣12.如图,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,两边PE、PF分别交AB、AC于点E、F,给出以下四个结论:①AE=CF;②△EPF是等腰直角三角形;③2S四边形AEPF=S△ABC;④BE+CF=EF.当∠EPF在△ABC内绕顶点P旋转时(点E与A、B重合).上述结论中始终正确的有()A.1个 B.2个 C.3个 D.4个3.如图,把一张正方形纸对折两次后,沿虚线剪下一角,展开后所得图形一定是()A.三角形 B.菱形 C.矩形 D.正方形4.如果1≤a≤,则+|a﹣1|的值是()A.1 B.﹣1 C.2a﹣3 D.3﹣2a5.若关于x的分式方程的解为非负数,则a的取值范围是()A.a≥1 B.a>1 C.a≥1且a≠4 D.a>1且a≠46.如图,在长方形中,点为中点,将沿翻折至,若,,则与之间的数量关系为()A. B. C. D.7.如图,菱形ABCD的周长为28,对角线AC,BD交于点O,E为AD的中点,则OE的长等于()A.2 B.3.5 C.7 D.148.若反比例函数的图象经过点(﹣1,2),则它的解析式是()A. B. C. D.9.若平行四边形中两个内角的度数比为1:3,则其中较小的内角为()A.90° B.60° C.120° D.45°10.在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为(

)A.9人 B.10人 C.11人 D.12人二、填空题(每小题3分,共24分)11.如果一个n边形的内角和等于它的外角和的3倍,则n=______.12.将直线y=2x-3向上平移5个单位可得______直线.13.在一次数学活动课上,老师让同学们借助一副三角板画平行线AB,下面是小楠、小曼两位同学的作法:老师说:“小楠、小曼的作法都正确”请回答:小楠的作图依据是______;小曼的作图依据是______.14.如图,在中,的平分线AD交BC于点D,的两边分别与AB、AC相交于M、N两点,且,若,则四边形AMDN的面积为___________.15.在△ABC中,AB=,AC=5,若BC边上的高等于3,则BC边的长为_____.16.如图,一根橡皮筋放置在x轴上,固定两端A和B,其中A点坐标(0,0),B点坐标(8,0),然后把中点C向上拉升3cm到D,则橡皮筋被拉长了_________cm.17.如图,正方形ODBC中,OC=1,OA=OB,则数轴上点A表示的数是.18.若直线和直线的交点在第三象限,则m的取值范围是________.三、解答题(共66分)19.(10分)阅读理解题:定义:如果一个数的平方等于-1,记为i2=-1,这个数i叫做虚数单位,把形如a+bi(a,b为实数)的数叫做复数,其中a叫这个复数的实部,b叫做这个复数的虚部,它的加、减,乘法运算与整式的加、减、乘法运算类似.例如计算:(2-i)+(5+3i)=(2+5)+(-1+3)i=7+2i;(1+i)×(2-i)=1×2-i+2×i-i2=2+(-1+2)i+1=3+i;根据以上信息,完成下列问题:(1)填空:i3=,i4=;(2)计算:(1+i)×(3-4i);(3)计算:i+i2+i3+…+i1.20.(6分)顺次连接四边形各边中点所得的四边形叫中点四边形.回答下列问题:(1)只要原四边形的两条对角线______,就能使中点四边形是菱形;(2)只要原四边形的两条对角线______,就能使中点四边形是矩形;(3)请你设计一个中点四边形为正方形,但原四边形又不是正方形的四边形,把它画出来.21.(6分)某中学举行了一次“世博”知识竞赛.赛后抽取部分参赛同学的成绩进行整理,并制作成图表如下:请根据以上图表提供的信息,解答下列问题:(1)写出表格中m和n所表示的数:m=,n=,并补全频数分布直方图;(2)抽取部分参赛同学的成绩的中位数落在第组;(3)如果比赛成绩80分以上(含80分)可以获得奖励,那么获奖率是多少?22.(8分)如图1,已知直线y=﹣2x+4与两坐标轴分别交于点A、B,点C为线段OA上一动点,连接BC,作BC的中垂线分别交OB、AB交于点D、E.(l)当点C与点O重合时,DE=;(2)当CE∥OB时,证明此时四边形BDCE为菱形;(3)在点C的运动过程中,直接写出OD的取值范围.23.(8分)如图,在△ABC中,点D为边BC的中点,点E在△ABC内,AE平分∠BAC,CE⊥AE点F在AB上,且BF=DE(1)求证:四边形BDEF是平行四边形(2)线段AB,BF,AC之间具有怎样的数量关系?证明你所得到的结论24.(8分)计算题:(1)解不等式组(2)先化筒,再求值(),其中m=(3)解方程=1-25.(10分)在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的四边形为整点四边形.如图,已知整点A(1,6),请在所给网格区域(含边界)上按要求画整点四边形.(1)在图1中画一个整点四边形ABCD,四边形是轴对称图形,且面积为10;(2)在图2中画一个整点四边形ABCD,四边形是中心对称图形,且有两个顶点各自的横坐标比纵坐标小1.26.(10分)某公司为了了解员工每人所创年利润情况,公司从各部门抽取部分员工对每年所创年利润情况进行统计,并绘制如图所示的统计图.(1)求抽取员工总人数,并将图补充完整;(2)每人所创年利润的众数是________,每人所创年利润的中位数是________,平均数是________;(3)若每人创造年利润10万元及(含10万元)以上为优秀员工,在公司1200员工中有多少可以评为优秀员工?

参考答案一、选择题(每小题3分,共30分)1、C【解析】

由题意推出x=0,或(x﹣1)=0,解方程即可求出x的值.【详解】解:∵x(x﹣1)=0,∴x1=0,x2=1,故选:C.【点睛】此题考查的是一元二次方程的解法,掌握用因式分解法解一元二次方程是解决此题的关键.2、C【解析】

根据等腰直角三角形的性质可得AP⊥BC,AP=PC,∠EAP=∠C=45°,根据同角的余角相等求出∠APE=∠CPF,然后利用“角边角”证明△APE和△CPF全等,根据全等三角形的可得AE=CF,判定①正确,再根据等腰直角三角形的定义得到△EFP是等腰直角三角形,判定②正确;根据等腰直角三角形的斜边等于直角边的倍表示出EF,可知EF随着点E的变化而变化,判定④错误,根据全等三角形的面积相等可得△APE的面积等于△CPF的面积相等,然后求出四边形AEPF的面积等于△ABC的面积的一半,判定③正确【详解】如图,连接EF,∵AB=AC,∠BAC=90°,点P是BC的中点,∴AP⊥BC,AP=PC,∠EAP=∠C=45°,∴∠APF+∠CPF=90°,∵∠EPF是直角,∴∠APF+∠APE=90°,∴∠APE=∠CPF,;在△APE和△CPF中,,∴△APE≌△CPF(ASA),∴AE=CF,故①正确;∴△EFP是等腰直角三角形,故②正确;根据等腰直角三角形的性质,EF=PE,所以,EF随着点E的变化而变化,只有当点E为AB的中点时,EF=PE=AP,在其它位置EF≠AP,故④错误;∵△APE≌△CPF,∴S△APE=S△CPF,∴S四边形AEPF=S△APF+S△APE=S△APF+S△CPF=S△APC=S△ABC,∴2S四边形AEPF=S△ABC故③正确,综上所述,正确的结论有①②③共3个.故选C.【点睛】本题考查了全等三角形的判定与性质、等腰直角三角形的判定与性质,根据同角的余角相等求出∠APE=∠CPF,从而得到△APE≌△CPF是解题的关键,也是本题的突破点.3、B【解析】

此类问题只有动手操作一下,按照题意的顺序折叠,剪开,观察所得的图形,可得正确的选项.【详解】由题意可得:四边形的四边形相等,故展开图一定是菱形.故选B.【点睛】此题主要考查了剪纸问题,对于一下折叠、展开图的问题,亲自动手操作一下,可以培养空间想象能力.4、A【解析】

直接利用a的取值范围进而化简二次根式以及绝对值得出答案.【详解】解:=2﹣a+a﹣1=1.故选:A.【点睛】此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.5、C【解析】试题分析:分式方程去分母转化为整式方程,表示出整式方程的解,根据解为非负数及分式方程分母不为1求出a的范围即可.解:去分母得:2(2x﹣a)=x﹣2,解得:x=,由题意得:≥1且≠2,解得:a≥1且a≠4,故选C.点睛:此题考查了分式方程的解,需注意在任何时候都要考虑分母不为1.6、D【解析】

直接利用平行线的性质结合翻折变换的性质得出△ADM≌△BCM(SAS),进而利用直角三角形的性质得出答案.【详解】∵M为CD中点,∴DM=CM,在△ADM和△BCM中∵,∴△ADM≌△BCM(SAS),∴∠AMD=∠BMC,AM=BM∴∠MAB=∠MBA∵将点C绕着BM翻折到点E处,∴∠EBM=∠CBM,∠BME=∠BMC=∠AMD∴∠DME=∠AMB∴∠EBM=∠CBM=(90°-β)∴∠MBA=(90°-β)+β=(90°+β)∴∠MAB=∠MBA=(90°+β)∴∠DME=∠AMB=180°-∠MAB-∠MBA=90°-β∵长方形ABCD中,∴CD∥AB∴∠DMA=∠MAB=(90°+β)∴∠DME+∠AME=∠ABE+∠MBE∵∠AME=α,∠ABE=β,∴90°-β+α=β+(90°-β)∴3β-2α=90°故选D.【点睛】本题考查的知识点是平行线的性质,解题关键是利用全等三角形对应角相等即可求解.7、B【解析】

由菱形的周长可求得AB的长,再利用三角形中位线定理可求得答案0【详解】∵四边形ABCD为菱形,∴AB28=7,且O为BD的中点.∵E为AD的中点,∴OE为△ABD的中位线,∴OEAB=3.1.故选B.【点睛】本题考查了菱形的性质,由条件确定出OE为△ABD的中位线是解题的关键.8、B【解析】

首先设出反比例函数解析式,再把(﹣1,2)代入解析式可得k的值,进而得到答案.【详解】解:设反比例函数解析式为y=,∵反比例函数的图象经过点(﹣1,2),∴k=﹣1×2=﹣2,∴反比例函数解析式为y=﹣,故选:B.【点睛】考查了待定系数法求反比例函数解析式,关键是掌握凡是函数图象经过的点,必能满足解析式.9、D【解析】

首先设平行四边形中两个内角分别为x°,3x°,由平行四边形的邻角互补,即可得x+3x=180,继而求得答案.【详解】解:∵平行四边形中两个内角的度数之比为1:3,

∴设平行四边形中两个内角分别为x°,3x°,

∴x+3x=180,

解得:x=45,

∴其中较小的内角是45°.

故选D.【点睛】本题考查了平行四边形的性质,掌握平行四边形的邻角互补是解题的关键.10、C【解析】

设参加酒会的人数为x人,根据每两人都只碰一次杯,如果一共碰杯55次,列出一元二次方程,解之即可得出答案.【详解】设参加酒会的人数为x人,依题可得:

x(x-1)=55,

化简得:x2-x-110=0,

解得:x1=11,x2=-10(舍去),

故答案为C.【点睛】考查了一元二次方程的应用,解题的关键是根据题中的等量关系列出方程.二、填空题(每小题3分,共24分)11、1【解析】

根据多边形内角和公式110°(n-2)和外角和为360°可得方程110(n-2)=360×3,再解方程即可.【详解】解:由题意得:110(n-2)=360×3,解得:n=1,故答案为:1.【点睛】此题主要考查了多边形内角和与外角和,要结合多边形的内角和公式与外角和的关系来寻求等量关系,构建方程即可求解.12、y=1x+1【解析】

根据平移前后两直线解析式中k值相等,b的值上加下减即可得出结论.【详解】解:原直线的k=1,b=-3;向上平移5个单位长度,得到了新直线,那么新直线的k=1,b=-3+5=1.∴新直线的解析式为y=1x+1.故答案是:y=1x+1.【点睛】此题考查的是求直线平移后的解析式,掌握直线的平移规律是解决此题的关键.13、同位角相等,两直线平行或垂直于同一直线的两条直线平行内错角相等,两直线平行【解析】

由平行线的判定方法即可得到小楠、小曼的作图依据.【详解】解:∵∠B=∠D=90°,∴AB//CD(同位角相等,两直线平行);∵∠ABC=∠DCB=90°,∴AB//CD(内错角相等,两直线平行),故答案为:同位角相等,两直线平行(或垂直于同一直线的两条直线平行);内错角相等,两直线平行.【点睛】本题考查了作图-复杂作图和平行线的判定方法,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.14、9.【解析】

作DE⊥AB于点E,DF⊥AC于点F,依据HL判定Rt△ADE≌Rt△ADF,即可得出AE=AF;判定△DEM≌△DFN,可得S△DEM=S△DFN,进而得到S四边形AMDN=S四边形AEDF,求得S△ADF=AF×DF=,即可得出结论.【详解】解:作DE⊥AB于点E,DF⊥AC于点F,∵AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,

∴DE=DF,

又∵DE⊥AB于点E,DF⊥AC于点F,

∴∠AED=∠AFD=90°,

又∵AD=AD,

∴Rt△ADE≌Rt△ADF(HL),

∴AE=AF;∵∠MDN+∠BAC=180°,

∴∠AMD+∠AND=180°,

又∵∠DNF+∠AND=180°

∴∠EMD=∠FND,

又∵∠DEM=∠DFN,DE=DF,

∴△DEM≌△DFN,

∴S△DEM=S△DFN,

∴S四边形AMDN=S四边形AEDF,

∵,AD平分∠BAC,

∴∠DAF=30°,∴Rt△ADF中,DF=3,AF==3,

∴S△ADF=AF×DF=×3×3=,

∴S四边形AMDN=S四边形AEDF=2×S△ADF=9.故答案为9.【点睛】本题考查全等三角形的性质和判定、角平分线的性质定理等知识;熟练掌握全等三角形的判定与性质是解决问题的关键.15、9或1【解析】【分析】△ABC中,∠ACB分锐角和钝角两种:①如图1,∠ACB是锐角时,根据勾股定理计算BD和CD的长可得BC的值;②如图2,∠ACB是钝角时,同理得:CD=4,BD=5,根据BC=BD﹣CD代入可得结论.【详解】有两种情况:①如图1,∵AD是△ABC的高,∴∠ADB=∠ADC=90°,由勾股定理得:BD==5,CD==4,∴BC=BD+CD=5+4=9;②如图2,同理得:CD=4,BD=5,∴BC=BD﹣CD=5﹣4=1,综上所述,BC的长为9或1;故答案为:9或1.【点睛】本题考查了勾股定理的运用,熟练掌握勾股定理是关键,并注意运用了分类讨论的思想解决问题.16、1【解析】

根据勾股定理,可求出AD、BD的长,则AD+BD-AB即为橡皮筋拉长的距离.【详解】Rt△ACD中,AC=AB=4cm,CD=3cm;根据勾股定理,得:AD==5(cm);∴AD+BD-AB=1AD-AB=10-8=1cm;故橡皮筋被拉长了1cm.

故答案是:1.【点睛】此题主要考查了等腰三角形的性质以及勾股定理的应用,解题的关键是理解题意,灵活运用所学知识解决问题.17、【解析】试题分析:∵正方形ODBC中,OC=1,∴根据正方形的性质,BC=OC=1,∠BCO=90°。∴在Rt△BOC中,根据勾股定理得,OB=。∴OA=OB=。∵点A在数轴上原点的左边,∴点A表示的数是。18、m<−1.【解析】

首先把y=2x-1和y=m-x,组成方程组,求解,x和y的值都用m来表示,根据题意交点坐标在第三象限表明x、y都小于0,即可求得m的取值范围.【详解】∵,∴解方程组得:,∵直线y=2x−1和直线y=m−x的交点在第三象限,∴x<0,y<0,∴m<−1,m<0.5,∴m<−1.故答案为:m<−1.【点睛】此题考查两条直线相交或平行问题,解题关键在于用m来表示x,y的值.三、解答题(共66分)19、(2)-i,2;(2)7-i;(3)i-2.【解析】试题分析:(2)把代入求出即可;

(2)根据多项式乘以多项式的计算法则进行计算,再把代入求出即可;

(3)先根据复数的定义计算,再合并即可求解.试题解析:(2)故答案为−i,2;(2)(3)20、(1)相等;(2)垂直;(3)见解析【解析】

(1)根据菱形的判定定理即可得到结论;(2)根据矩形的判定定理即可得到结论;(3)根据三角形的中位线平行于第三边并等于第三边的一半,先判断出AC=BD,又正方形的四个角都是直角,可以得到正方形的邻边互相垂直,然后证出AC与BD垂直,即可得到四边形ABCD满足的条件.【详解】解:(1)顺次连接对角线相等的四边形的四边中点得到的是菱形;(2)顺次连接对角线垂直的四边形的四边中点得到的是矩形;(3)如图,已知点E、F、G、H分别为四边形ABCD的边AB、BC、CD、DA的中点,AC=BD且AC⊥BD,则四边形EFGH为正方形,∵E、F分别是四边形ABCD的边AB、BC的中点,∴EF∥AC,EF=AC,同理,EH∥BD,EH=BD,GF=BD,GH=AC,∵AC=BD,∴EF=EH=GH=GF,∴平行四边形ABCD是菱形.∵AC⊥BD,∴EF⊥EH,∴四边形EFGH是正方形,故顺次连接对角线相等且垂直的四边形的四边中点得到的四边形是正方形,故答案为:相等,垂直.【点睛】本题考查了中点四边形的判定,以及三角形的中位线定理和矩形的性质,正确证明四边形EFMN是平行四边形是关键.21、(1)m=90,n=0.3;(2)二;(3)40%.【解析】

(1)由总数=某组频数÷频率计算出总人数,则m等于总数减去其它组的频数,再由频率之和为1计算n;(2)由中位数的概念分析;(3)由获奖率=莸奖人数÷总数计算.【详解】(1)总人数=30÷0.15=200人,m=200﹣30﹣60﹣20=90,n=1﹣0.15﹣0.45﹣0.1=0.3,如图:(2)由于总数有200人,中位数应为第100、101名的平均数,而第一组有30人,第二组有90人,故中位数落在第二组内;(3)获奖率==40%,答:获奖率是40%.【点睛】本题考查了利用统计图获取信息的能力.同时考查中位数的求法:给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.22、(1)1;(1)证明见解析;(3)≤OD≤1.【解析】

(1)画出图形,根据DE垂直平分BC,可得出DE是△BOA的中位线,从而利用中位线的性质求出DE的长度;(1)先根据中垂线的性质得出DB=DC,EB=EC,然后结合CE∥OB判断出BE∥DC,得出四边形BDCE为平行四边形,结合DB=DC可得出结论.(3)求两个极值点,①当点C与点A重合时,OD取得最小值,②当点C与点O重合时,OD取得最大值,继而可得出OD的取值范围.【详解】解:∵直线AB的解析式为y=﹣1x+4,∴点A的坐标为(1,0),点B的坐标为(0,4),即可得OB=4,OA=1,(1)当点C与点O重合时如图所示,∵DE垂直平分BC(BO),∴DE是△BOA的中位线,∴DE=OA=1;故答案为:1;(1)当CE∥OB时,如图所示:∵DE为BC的中垂线,∴BD=CD,EB=EC,∴∠DBC=∠DCB,∠EBC=∠ECB,∴∠DCE=∠DBE,∵CE∥OB,∴∠CEA=∠DBE,∴∠CEA=∠DCE,∴BE∥DC,∴四边形BDCE为平行四边形,又∵BD=CD,∴四边形BDCE为菱形.(3)当点C与点O重合时,OD取得最大值,此时OD=OB=1;当点C与点A重合时,OD取得最小值,如图所示:在Rt△AOB中,AB==1,∵DE垂直平分BC(BA),∴BE=BA=,易证△BDE∽△BAO,∴,即,解得:BD=,则OD=OB﹣BD=4﹣=.综上可得:≤OD≤1.【点睛】本题考查一次函数综合题.23、(1)见解析;(2),理由见解析【解析】

(1)延长CE交AB于点G,证明,得E为中点,通过中位线证明DEAB,结合BF=DE,证明BDEF是平行四边形(2)通过BDEF为平行四边形,证得BF=DE=BG,再根据,得AC=AG,用AB-AG=BG,可证【详解】(1)证明:延长CE交AB于点G∵AECE∴在和∴∴GE=EC∵BD=CD∴DE为的中位线∴DEAB∵DE=BF∴四边形BDEF是平行四边形(2)理由如下:∵四边形BDEF是平行四边形∴BF=DE∵D,E分别是BC,GC的中点∴BF=DE=BG∵∴AG=ACBF=(AB-AG)=(A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论