福建省永春三中学片区2024年八年级下册数学期末考试试题含解析_第1页
福建省永春三中学片区2024年八年级下册数学期末考试试题含解析_第2页
福建省永春三中学片区2024年八年级下册数学期末考试试题含解析_第3页
福建省永春三中学片区2024年八年级下册数学期末考试试题含解析_第4页
福建省永春三中学片区2024年八年级下册数学期末考试试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省永春三中学片区2024年八年级下册数学期末考试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.如图,在中,于点D,且是的中点,若则的长等于()A.5 B.6 C.7 D.82.我校男子足球队22名队员的年龄如下表所示:这些队员年龄的众数和中位数分别是()年龄/岁

14

15

16

17

18

19

人数

2

1

3

6

7

3

A.18,17 B.17,18 C.18,17.5 D.17.5,183.一个矩形的两条对角线的夹角为60°,且对角线的长度为8cm,则较短边的长度为()A. B. C. D.4.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是()A.乙前4秒行驶的路程为48米B.在0到8秒内甲的速度每秒增加4米/秒C.两车到第3秒时行驶的路程相等D.在4至8秒内甲的速度都大于乙的速度5.如图,已知菱形ABCD,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为()A.16 B.12 C.24 D.186.下列各式正确的是()A. B.C. D.7.永康市某一周的最高气温统计如下单位::27,28,30,31,28,30,28,则这组数据的众数和中位数分别是A.28,27 B.28,28 C.28,30 D.27,288.如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC的中点恰好与D点重合,AB′交CD于点E,若AB=3,则△AEC的面积为()A.3 B.1.5 C.2 D.9.某校团委为了解本校八年级500名学生平均每晚的睡眠时间,随机选择了该年级100名学生进行调查.关于下列说法:①本次调查方式属于抽样调查;②每个学生是个体;③100名学生是总体的一个样本;④总体是该校八年级500名学生平均每晚的睡眠时间;其中正确的是()A.①② B.①④ C.②③ D.②④10.如图,在矩形ABCD中,AB=8,BC=6,EF经过对角线的交点O,则图中阴影部分的面积是()A.6 B.12 C.15 D.2411.如图,ABCD的对角线、交于点,顺次联结ABCD各边中点得到的一个新的四边形,如果添加下列四个条件中的一个条件:①⊥;②;③;④,可以使这个新的四边形成为矩形,那么这样的条件个数是()A.1个; B.2个;C.3个; D.4个.12.下列各式:中,分式的有()A.1个 B.2个 C.3个 D.4个二、填空题(每题4分,共24分)13.如图,将5个边长都为4cm的正方形按如图所示的方法摆放,点A、B、C、D是正方形的中心,则正方形重叠的部分(阴影部分)面积和为_____.14.新定义:[a,b]为一次函数y=ax+b(a≠0,a,b为实数)的“关联数”,若“关联数”[1,m﹣2]的一次函数是正比例函数,则关于x的方程x2+3x+m=0的解为_____.15.平行四边形的面积等于,两对角线的交点为,过点的直线分别交平行四边形一组对边、于点、,则四边形的面积等于________。16.如图,OP=1,过P作PP1⊥OP且PP1=1,得OP1=;再过P1作P1P2⊥OP1且P1P2=1,得OP2=;又过P2作P2P3⊥OP2且P2P3=1,得OP3=2…依此法继续作下去,得=____.17.在中,若∠A=38°,则∠C=____________18.过多边形某个顶点的所有对角线,将这个多边形分成个三角形,这个多边形是________.三、解答题(共78分)19.(8分)解一元二次方程:(1);(2).20.(8分)如图,将菱形OABC放置于平面直角坐标系中,边OA与x轴正半轴重合,D为边OC的中点,点E,F,G分别在边OA,AB与BC上,若∠COA=60°,OA=45,则当四边形DEFG为菱形时,点G的坐标为_____.21.(8分)请用无刻度尺的直尺分别按下列要求作图(保留作图痕迹).(1)图1中,点是的所在边上的中点,作出的边上中线.(2)如图,中,,且,是它的对角线,在图2中找出的中点;(3)图3是在图2的基础上已找出的中点,请作出的边上的中线.22.(10分)某学校打算招聘英语教师。对应聘者进行了听、说、读、写的英语水平测试,其中甲、乙两名应聘者的成绩(百分制)如下表所示。(1)如果学校想招聘说、读能力较强的英语教师,听、说、读、写成绩按照2:4:3:1的比确定,若在甲、乙两人中录取一人,请计算这两名应聘者的平均成绩(百分制)。从他们的成绩看,应该录取谁?(2)学校按照(1)中的成绩计算方法,将所有应聘者的最后成绩绘制成如图所示的频数分布直方图(每组分数段均包含左端数值,不包含右端数值,如最后左边一组分数为:)。①参加该校本次招聘英语教师的应聘者共有______________人(直接写出答案即可)。②学校决定由高分到低分录用3名教师,请判断甲、乙两人能否被录用?并说明理由。23.(10分)某区对即将参加中考的初中毕业生进行了一次视力抽样调查,绘制出频数分布表和频数分布直方图的一部分.请根据图表信息回答下列问题:视力频数(人)频率4.0≤x<4.3200.14.3≤x<4.6400.24.6≤x<4.9700.354.9≤x<5.2a0.35.2≤x<5.510b(1)本次调查的样本为,样本容量为;(2)在频数分布表中,组距为,a=,b=,并将频数分布直方图补充完整;(3)若视力在4.6以上(含4.6)均属正常,计算抽样中视力正常的百分比.24.(10分)如图,直线l1:y=2x+1与直线l2:y=mx+4相交于点P(1,b),与x轴交于A,B两点,(1)求b,m的值;(2)求△ABP的面积;(3)垂直于x轴的直线x=a与直线l1,l2分别相交于C,D,若线段CD长为2,求a的值.25.(12分)已知y是x的一次函数,且当x=-4,y=9;当x=6时,y=-1.(1)求这个一次函数的解析式和自变量x的取值范围;(2)当x=-时,函数y的值;(3)当y=7时,自变量x的值.26.如图,在△ABC中,AC=BC,∠C=36°,AD平分∠BAC交BC于点D.求证:AB=DC.

参考答案一、选择题(每题4分,共48分)1、D【解析】

由“直角三角形斜边上的中线等于斜边的一半”求得AC=2DE=10;然后在直角△ACD中,利用勾股定理来求线段CD的长度即可.【详解】∵△ABC中,CD⊥AB于D,E是AC的中点,DE=5,∴DE=AC=5,∴AC=10.在直角△ACD中,∠ADC=90°,AD=6,AC=10,则根据勾股定理,得CD==8.故选D【点睛】此题考查勾股定理,直角三角形斜边上的中线,解题关键在于利用勾股定理求值2、A【解析】

根据众数,中位数的定义进行分析即可.【详解】试题解析:18出现的次数最多,18是众数.第11和第12个数分别是1、1,所以中位数为1.故选A.【点睛】考核知识点:众数和中位数.3、C【解析】

根据矩形的性质得到△AOB是等边三角形,即可得到答案.【详解】如图,由题意知:∠AOB=60°,AC=BD=8cm,∵四边形ABCD是矩形,∴AO=AC=BD=OB=4cm,∴△AOB是等边三角形,∴AB=OA=4cm,故选:C.【点睛】此题考查矩形的性质,等边三角形的判定及性质,正确掌握矩形的性质是解题的关键.4、C【解析】

A.根据图象可得,乙前4秒行驶的路程为12×4=48米,正确;B.根据图象得:在0到8秒内甲的速度每秒增加4米秒/,正确;C.根据图象可得两车到第3秒时行驶的路程不相等,故本选项错误;D.在4至8秒内甲的速度都大于乙的速度,正确;故选C.5、A【解析】

由菱形ABCD,∠B=60°,易证得△ABC是等边三角形,继而可得AC=AB=4,则可求得以AC为边长的正方形ACEF的周长.【详解】解:∵四边形ABCD是菱形,∴AB=BC.∵∠B=60°,∴△ABC是等边三角形,∴AC=AB=BC=4,∴以AC为边长的正方形ACEF的周长为:4AC=1.故选A.【点睛】本题考查了菱形的性质、正方形的性质以及等边三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.6、C【解析】

根据分式的性质,分式的加减,可得答案.【详解】A、c=0时无意义,故A错误;B、分子分母加同一个整式,分式的值发生变化,故B错误;C、分子分母都除以同一个不为零的整式,分式的值不变,故C符合题意;D、,故D错误;故选C.【点睛】本题考查了分式的性质及分式的加减,利用分式的性质及分式的加减是解题关键.7、B【解析】

根据众数和中位数的意义进行分析.【详解】27,28,30,31,28,30,28,中28出现次数最多,28再中间,则这组数据的众数和中位数分别是28,28.故选:28,28.【点睛】本题考核知识点:众数和中位数.解题关键点:理解众数和中位数的意义.8、D【解析】

解:∵旋转后AC的中点恰好与D点重合,即AD=AC′=AC,∴在Rt△ACD中,∠ACD=30°,即∠DAC=60°,∴∠DAD′=60°,∴∠DAE=30°,∴∠EAC=∠ACD=30°,∴AE=CE.在Rt△ADE中,设AE=EC=x,则有DE=DC﹣EC=AB﹣EC=3﹣x,AD=×3=.根据勾股定理得:,解得:x=2,∴EC=2,则S△AEC=EC•AD=.故选D.9、B【解析】

根据问题特点,选用合适的调查方法.适合普查的方式一般有以下几种:①范围较小;②容易掌控;③不具有破坏性;④可操作性较强.同时根据随机事件的定义,以及样本容量的定义来解决即可.【详解】解:①本次调查方式属于抽样调查,正确;②每个学生的睡眠时间是个体,此结论错误;③100名学生的睡眠时间是总体的一个样本,此结论错误;④总体是该校八年级500名学生平均每晚的睡眠时间,正确.故选:B.【点睛】本题考查总体,样本,样本的容量的概念,熟练掌握相关定义是解题关键.10、B【解析】试题解析:在△AOE和△COF中,∠EAO=∠FCO,AO=CO,∠COF=∠EOA,∴△AOE≌△COF,则△AOE和△COF面积相等,∴阴影部分的面积与△CDO的面积相等,又∵矩形对角线将矩形分成面积相等的四部分,∴阴影部分的面积为=1.故选B.考点:矩形的性质.11、C【解析】

根据顺次连接四边形的中点,得到的四边形形状和四边形的对角线位置、数量关系有关,利用三角形中位线性质可得:当对角线垂直时,所得新四边形是矩形.逐一对四个条件进行判断.【详解】解:顺次连接四边形的中点,得到的四边形形状和四边形的对角线位置、数量关系有关,利用三角形中位线性质可得:当对角线垂直时,所得新四边形是矩形.

①∵AC⊥BD,∴新的四边形成为矩形,符合条件;②∵四边形ABCD是平行四边形,∴AO=OC,BO=DO.∵C△ABO=C△CBO,∴AB=BC.根据等腰三角形的性质可知BO⊥AC,∴BD⊥AC.所以新的四边形成为矩形,符合条件;③∵四边形ABCD是平行四边形,∴∠CBO=∠ADO.∵∠DAO=∠CBO,∴∠ADO=∠DAO.∴AO=OD.∴AC=BD,∴四边形ABCD是矩形,连接各边中点得到的新四边形是菱形,不符合条件;④∵∠DAO=∠BAO,BO=DO,∴AO⊥BD,即平行四边形ABCD的对角线互相垂直,∴新四边形是矩形.符合条件.所以①②④符合条件.故选:C.【点睛】本题主要考查矩形的判定、平行四边形的性质、三角形中位线的性质.12、B【解析】

根据分式定义:一般地,如果A,B表示两个整式,并且B中含有字母,那么式子叫做分式进行分析即可.【详解】是分式,共2个,故选:B.【点睛】本题考查分式的定义,解题的关键是掌握分式的定义.二、填空题(每题4分,共24分)13、16cm2【解析】

根据正方形的性质,每一个阴影部分的面积等于正方形的,再根据正方形的面积公式列式计算即可得解.【详解】解:∵点A、B、C、D分别是四个正方形的中心∴每一个阴影部分的面积等于正方形的∴正方形重叠的部分(阴影部分)面积和故答案为:【点睛】本题考查了正方形的性质以及与面积有关的计算,不规则图形的面积可以看成规则图形面积的和或差,正确理解运用正方形的性质是解题的关键.14、x1=﹣1,x1=﹣1.【解析】

利用题中的新定义求出m的值,代入一元二次方程,运用因式分解法解方程,即可求出解.【详解】解:由“关联数”定义得一次函数为y=x+m﹣1,又∵此一次函数为正比例函数,∴m﹣1=0,解得:m=1,∴关于x的方程为x1+3x+1=0,因式分解得:(x+1)(x+1)=0,∴x+1=0或x+1=0,∴x1=﹣1,x1=﹣1;故答案为x1=﹣1,x1=﹣1.【点睛】本题考查新定义“关联数”、一元二次方程的解法以及一次函数的定义,弄清题中的新定义是解本题的关键.15、【解析】

根据“过平行四边形对角线的交点的直线将平行四边形等分为两部分”解答即可.【详解】如图平行四边形ABCD,∵四边形ABCD是平行四边形,∴OD=OB,OA=OC,则可得:△DF0≌△BEO,△ADO≌△CBO,△CF0≌△AEO,∴直线l将四边形ABCD的面积平分.∵平行四边形ABCD的面积等于10cm2,∴四边形AEFD的面积等于5cm2,故答案为:5cm2【点睛】本题考查了中心对称,全等三角形的判定与性质,解答本题的关键在于举例说明,利用全等的知识解决.16、【解析】

根据勾股定理和已知条件,找出线段长度的变化规律,从而求出的长度,然后根据三角形的面积公式求面积即可.【详解】解:∵OP=1,过P作PP1⊥OP且PP1=1,得OP1=再过P1作P1P2⊥OP1且P1P2=1,得OP2=又过P2作P2P3⊥OP2且P2P3=1,得OP3=∴PnPn+1=1,OPn=∴P2014P2015=1,OP2014=∴=P2014P2015·OP2014=故答案为:.【点睛】此题考查的是利用勾股定理探索规律题,找到线段长度的变化规律并归纳公式是解决此题的关键.17、38°【解析】

根据平行四边形对角相等即可求解.【详解】解:∵平行四边形ABCD中,∠A=38°,∴∠C=∠A=38°,故答案为:38°.【点睛】本题考查了平行四边形的性质,要知道平行四边形对角相等.18、【解析】

根据n边形从一个顶点出发可引出(n-3)条对角线,可组成n-2个三角形,依此可得n的值.【详解】解:设这个多边形是n边形,由题意得,n-2=7,解得:n=9,故答案为:9.【点睛】本题考查了多边形的对角线,求对角线条数时,直接代入边数n的值计算,而计算边数时,需利用方程思想,解方程求n.三、解答题(共78分)19、(1),;(2)或【解析】

(1)先变形为4x(2x-1)+2x-1=0,然后利用因式分解法解方程;(2)先把方程化为一般式,然后利用求根公式法解方程;【详解】解:(1)4x(2x-1)+2x-1=0,

(2x-1)(4x+1)=0,

2x-1=0或4x+1=0,

所以,;

(2).3x2-5x-2=0,

△=(-5)2-4×3×(-2)=49,所以或;【点睛】本题考查了解一元二次方程-因式分解法:就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了配方法解一元二次方程.20、(35,215)【解析】

作辅助线,构建全等三角形,证明ΔODN≅ΔCDM(AAS),得DN=DM,由中点得OD=25,根据直角三角形30度角的性质和勾股定理得:ON=5,DN=15,所以MN=EG=215,证明DF=OA=45【详解】解:过D作MN⊥OA于N,交BC的延长线于M,连接DF、EG,交于点H,∵四边形ABCO是菱形,∴BM//OA,∴∠M=∠OND=90°,∵OD=DC,∠ODN=∠MDC,∴ΔODN≅ΔCDM(AAS),∴DN=DM,∵OA=OC=45∴OD=25RtΔDON中,∴∠ODN=30°,∴ON=5,DN=∴MN=2DN=215∵四边形DEFG是菱形,∴DF⊥EG,DH=12DF∴Rt∴MG=EN,∵MG//EN,∠M=90°,∴四边形MNEG为矩形,∴EG⊥BM,EG=MN=215∵BC//OA,DF⊥EG,EG⊥BC,∴DF//OA//BC,∵OD//AF,∴四边形DOAF是平行四边形,∴DF=OA=45∴DH=EN=1∴OE=ON+EN=35∴G(35,2故答案为:(35,2【点睛】本题考查坐标与图形的性质、菱形的性质、全等三角形的判定和性质、平行四边形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.21、(1)见解析;(2)见解析;(3)见解析【解析】

(1)根据三角形的三条中线交于一点即可解决问题.(2)延长AD,BC交于点K,连接AC交BD于点O,作直线OK交AB于点E,点E即为所求.(3)连接EC交BD于K,连接AK,DE交于点O,作直线OB交AD于F,线段BF即为所求【详解】(1)图1中,中线CE即为所求.(2)如图2中,AB的中点E即为所求(3)图3中,AD边上中线BF即为所求.【点睛】本题考查作图-复杂作图,三角形的中线等知识,解题的关键是灵活运用所学知识解决问题.22、(1)录取乙;(2)①30,②乙一定能被录用;甲不一定能被录用,见解析.【解析】

(1)根据加权平均数的定义与性质即可求解判断;(2)①根据直方图即可求解;②根据直方图判断甲乙所在的分段,即可判断.【详解】解:(1)由题意得,(分)(分)∵∴应该录取乙。(2)①30②由频数分布直方图可知成绩最高一组分数段中有1人,而分,所以乙是第一名,一定被录取;在一组有5人,其中有2人被录用,分,可确定甲在本组中,但不能确定甲在本组中排第几名,所以甲不一定能被录用。【点睛】此题主要考查统计调查的应用,解题的关键是熟知加权平均数的求解与性质.23、(1)从中抽取的200名即将参加中考的初中毕业生的视力;200;(2)0.3;60;0.05,见解析;(3)70%.【解析】

(1)根据样本的概念、样本容量的概念解答;

(2)根据组距的概念求出组距,根据样本容量和频率求出a,根据样本容量和频数求出b,将频数分布直方图补充完整;

(3)根据频数分布直方图求出抽样中视力正常的百分比.【详解】(1)样本容量为:20÷0.1=200,本次调查的样本为从中抽取的200名即将参加中考的初中毕业生的视力,故答案为:从中抽取的200名即将参加中考的初中毕业生的视力;200;(2)组距为0.3,a=200×0.3=60,b=10÷200=0.05,故答案为:0.3;60;0.05;频数分布直方图补充完整如图所示;(3)抽样中视力正常的百分比为:×100%=70%.【点睛】本题考查的是读频数分布直方图的能力和利用统计图获取信息的能力,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.24、(1)m=-1;(2);(3)a=或a=.【解析】

(1)由点P(1,b)在直线l1上,利用一次函数图象上点的坐标特征,即可求出b值,再将点P的坐标代入直线l2中,即可求出m值;(2)根据解析式求得A、B的坐标,然后根据三角形面积公式即可求得;(3)由点C、D的横坐标,即可得出点C、D的纵坐标,结合CD=2即可得出关于a的含绝对值符号的一元一次方程,解之即

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论