2022-2023学年安徽省六安市翁墩中学高二数学文模拟试题含解析_第1页
2022-2023学年安徽省六安市翁墩中学高二数学文模拟试题含解析_第2页
2022-2023学年安徽省六安市翁墩中学高二数学文模拟试题含解析_第3页
2022-2023学年安徽省六安市翁墩中学高二数学文模拟试题含解析_第4页
2022-2023学年安徽省六安市翁墩中学高二数学文模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年安徽省六安市翁墩中学高二数学文模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.设集合A={x|x≤3,x∈N*},B={﹣2,0,2,3},则A∩B=()A.{3} B.{2,3} C.{0,2,3} D.{﹣2,0,2}参考答案:B【分析】先分别求出集合A和B,利用交集定义直接求解.【解答】解:∵集合A={x|x≤3,x∈N*}={1,2,3},B={﹣2,0,2,3},∴A∩B={2,3}.故选:B.2.已知p:存在x∈R,mx2+1≤0;q:对任意x∈R,x2+mx+1>0,若p或q为假,则实数m的取值范围为()A.m≤-2

B.m≥2C.m≥2或m≤-2

D.-2≤m≤2参考答案:B3.下列说法正确的是()A.命题“若x2=1,则x=1的否命题为:“若x2=1,则x≠1”B.“m=1”是“直线x﹣my=0和直线x+my=0互相垂直”的充要条件C.命题“?x0∈R,使得x02+x0+1<0”的否定是:“?x∈R,均有x2+x+1<0”D.命题“已知A,B为一个三角形两内角,若A=B,则sinA=sinB”的否命题为真命题参考答案:D【考点】命题的真假判断与应用.【分析】写出命题的否命题判断A;由两直线垂直与系数的关系求得m判断B;写出特称命题的否定判断C;由充分必要条件的判定方法判断D.【解答】解:命题“若x2=1,则x=1的否命题为:“若x2≠1,则x≠1”,故A错误;由1×1﹣m2=0,得m=±1,∴“m=1”是“直线x﹣my=0和直线x+my=0互相垂直”的充分不必要条件,故B错误;命题“?x0∈R,使得x02+x0+1<0”的否定是:“?x∈R,均有x2+x+1≥0”,故C错误;由三角形中,A=B?a=b?sinA=sinB,得:命题“已知A,B为一个三角形两内角,若A=B,则sinA=sinB”的否命题为真命题,故D正确.故选:D.4.椭圆的离心率为(

)A.

B.

C.

D.

参考答案:C略5.(理)已知点P1的球坐标是P1(4,,),P2的柱坐标是P2(2,,1),则|P1P2|=(

)A.

B.

C.

D.参考答案:A略6.用秦九韶算法计算多项式在时的值时,的值为(

A.-845

B.220

C.-57

D.34参考答案:C略7.下列说法中正确的是(

A.一个命题的逆命题为真,则它的逆否命题一定为真

B.“”与“”不等价

C.“,则全为”的逆否命题是“若全不为,则”

D.一个命题的否命题为真,则它的逆命题一定为真参考答案:D略8.下列命题中为真命题的是(

)A.命题“若,则”的逆命题

B.命题“若,则”的否命题C.命题“若,则”的逆命题

D.命题“若,则”的逆否命题参考答案:B9.设,则下列不等式中正确的是(

(A)

(B)(c)

(D)参考答案:B已知和,比较与,因为,所以,同理由得;作差法:,所以,综上可得;故选B.(方法二)取,,则,,所以.10.设椭圆C:=1(a>b>0)的左、右焦点分别为F1、F2,P是C上的点PF2⊥F1F2,∠PF1F2=30°,则C的离心率为()A. B. C. D.参考答案:D【考点】椭圆的简单性质.【分析】设|PF2|=x,在直角三角形PF1F2中,依题意可求得|PF1|与|F1F2|,利用椭圆离心率的性质即可求得答案.【解答】解:|PF2|=x,∵PF2⊥F1F2,∠PF1F2=30°,∴|PF1|=2x,|F1F2|=x,又|PF1|+|PF2|=2a,|F1F2|=2c∴2a=3x,2c=x,∴C的离心率为:e==.故选D.二、填空题:本大题共7小题,每小题4分,共28分11.已知F1、F2是椭圆C:(a>b>0)的两个焦点,P为椭圆C上一点,且.若△PF1F2的面积为9,则b=

.参考答案:3考点:椭圆的应用;椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:利用△PF1F2的面积=求解,能得到b的值.解答: 解:由题意知△PF1F2的面积=,∴b=3,故答案为3.点评:主要考查椭圆的定义、基本性质和平面向量的知识.12.为了了解某校高中学生的近视眼发病率,在该校学生中进行分层抽样调查,已知该校高一、高二、高三分别有学生名、名、名,若高三学生共抽取名,则高一年级每一位学生被抽到的概率是___________.参考答案:略13.不等式组所表示的平面区域内的整点(横坐标和纵坐标均为整数的点)是

。参考答案:(1,1)略14.双曲线﹣=1的渐近线方程是.参考答案:y=±x【考点】双曲线的简单性质.【分析】把曲线的方程化为标准方程,求出a和b的值,再根据焦点在x轴上,求出渐近线方程.【解答】解:双曲线,∴a=2,b=3,焦点在x轴上,故渐近线方程为y=±x=±x,故答案为y=±.15.我国古代数学算经十书之一的《九章算术》中有一“衰分”问题.“今有北乡八千七百五十人,西乡七千二百五十人,南乡八千三百五十人,凡三乡,发役四百八十七人.则西乡遣

人”.参考答案:145今有北乡八千七百五十人,西乡七千二百五十人,南乡八千三百五十人,凡三乡,发役四百八十七人.则西乡遣:487145.故答案为:145.

16.执行右边的框图,若输出的结果为8,则输入的x的值是

;参考答案:略17.在50件产品中有4件是次品,从中任意抽出5件,至少有3件是次品的抽法共种(用数字作答).参考答案:4186【考点】D3:计数原理的应用.【分析】根据题意,至少有3件次品可分为有3件次品与有4件次品两种情况,有4件次品抽法C44C461,有3件次品的抽法C43C462,根据分类计数原理得到结果.【解答】解:根据题意,“至少有3件次品”可分为“有3件次品”与“有4件次品”两种情况,有4件次品抽法C44C461有3件次品的抽法C43C462共有C44C461+C43C462=4186种不同抽法故答案为:4186三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.在边长为60cm的正方形铁皮的四切去相等的正方形,再把它的边沿虚线折起,做成一个无盖的方底箱子,箱底的边长是多少时,箱子的容积最大?最大容积是多少?

参考答案:解:设箱底的边长为xcm,箱子的容积为V,则V=x2?=-+30x2=-+60x当=0时,x=40或x=0(舍去),x=40是函数V的唯一的极值点,也就是最大值点,

略19.函数角度看,可以看成是以r为自变量的函数,其定义域是.(1)证明:(2)试利用1的结论来证明:当n为偶数时,的展开式最中间一项的二项式系数最大;当n为奇数时的展开式最中间两项的二项式系数相等且最大.参考答案:(1)证明见解析;(2)证明见解析.【分析】(1)先根据组合数公式求出、,计算的值,从而证得结论;(2)设,由(1)可得,令,可得(等号不成立),故有当时,成立;当时,成立.故最大,当为奇数时,同理可证,从而证得结论.【详解】(1)因为,又因为,所以.则成立.(2)设,因为,,所以.令,所以,则(等号不成立),所以时,成立,反之,当时,成立.所以最大,即展开式最中间一项的二项式系数最大;当为奇数时,设,其最中间有两项且,由(1)知,显然,,令,可得,,当时,,且这两项为二项展开式最中间两项的系数,所以时,成立;由对称性可知:当时,成立,又,故当为奇数时,的展开式最中间两项的二项式系数相等且最大.【点睛】本题主要考查组合及组合数公式,二项式定理的应用以及二项式系数的性质,令,求出的范围是解本题的关键,考查学生的计算能力和逻辑推理能力,属于中档题.20.已知直线L与抛物线C:y2=4x交于A、B两点,且线段AB的中点M(3,2).(Ⅰ)求直线L的方程(Ⅱ)线段AB的长.参考答案:【考点】抛物线的简单性质.【分析】(Ⅰ)直线L:y﹣2=k(x﹣3),直线方程与抛物线方程联立化为:k2x2﹣6kx+(2﹣3k)2=0,根据线段AB的中点M(3,2),即可求出k的值,(Ⅱ)设A(x1,y1),B(x2,y2),x1+x2=6,利用|AB|=x1+x2+p即可得出.【解答】解:(Ⅰ)设直线L:y﹣2=k(x﹣3),由消去y整理得,k2x2﹣6kx+(2﹣3k)2=0当k=0时,显然不成立.当k≠0时.,又得,,∴直线L:y﹣2=x﹣3,即x﹣y﹣1=0;(Ⅱ)又焦点F(1,0)满足直线L:x﹣y﹣1=0.设A(x1,y1),B(x2,y2),又|AB|=|FA|+|FB|=(x1+1)+(x2+1),x1+x2=6,∴|AB|=8.21.已知数列{an}的前n项和Sn=n2﹣n(n∈N*).正项等比数列{bn}的首项b1=1,且3a2是b2,b3的等差中项.(I)求数列{an},{bn}的通项公式;(II)若cn=,求数列{cn}的前n项和Tn.参考答案:【考点】数列的求和.【分析】(I)数列{an}的前n项和sn=n2﹣n,当n=1时,a1=s1;当n≥2时,an=sn﹣sn﹣1.可得an.利用等比数列的通项公式可得bn.(2)利用“错位相减法”与等比数列的前n项和公式即可得出.【解答】解:(I)数列{an}的前n项和sn=n2﹣n,当n=1时,a1=s1=0;当n≥2时,an=sn﹣sn﹣1=(n2﹣n)﹣=2n﹣2.当n=1时上式也成立,∴an=2n﹣2.设正项等比数列{bn}的公比为q,则,b2=q,b3=q2,3a2=6,∵3a2是b2,b3的等差中项,∴2×6=q+q2,得q=3或q=﹣4(舍去),∴bn=3n﹣1.(Ⅱ)由(Ⅰ)知cn==,∴数列{cn}的前n项和Tn=…①.Tn=…②①﹣②得Tn==2×=1﹣.∴Tn=.【点评】本题考查了数列的递推式的处理,及等差数列、等比数列的通项,错位相减法求和,属于中档题.22.直线的右支交于不同的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论