2022-2023学年广西壮族自治区贵港市桂平江口镇中学高二数学文月考试题含解析_第1页
2022-2023学年广西壮族自治区贵港市桂平江口镇中学高二数学文月考试题含解析_第2页
2022-2023学年广西壮族自治区贵港市桂平江口镇中学高二数学文月考试题含解析_第3页
2022-2023学年广西壮族自治区贵港市桂平江口镇中学高二数学文月考试题含解析_第4页
2022-2023学年广西壮族自治区贵港市桂平江口镇中学高二数学文月考试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年广西壮族自治区贵港市桂平江口镇中学高二数学文月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知不等式对一切正整数n恒成立,则实数a的范围为()A.(0,3) B.(1,3) C.(2,4) D.(3,+∞)参考答案:B【考点】数列的求和.【分析】由于,于是原不等式化为>,由于不等式对一切正整数n恒成立,可得log2(a﹣1)+a﹣,化简整理利用对数函数的单调性即可得出.【解答】解:∵,∴不等式,化为>,由于不等式对一切正整数n恒成立,∴log2(a﹣1)+a﹣,化为4﹣a>log2(a﹣1),∴1<a<3.故选:B.2.若x、y为实数,且x+2y=4,则的最小值为

)A.18

B.12

C.2

D.4参考答案:A3.用反证法证明命题“若”时,第一步应假设

)A.

B.

C.

D.参考答案:D4.设随机变量ξ服从正态分布N(1,σ2),若P(ξ<2)=0.8,则P(0<ξ<1)的值为()A.0.2 B.0.3 C.0.4 D.0.6参考答案:B【考点】正态分布曲线的特点及曲线所表示的意义.【分析】根据随机变量ξ服从正态分布N(1,σ2),看出这组数据对应的正态曲线的对称轴x=1,根据正态曲线的特点,得到P(0<ξ<1)=P(0<ξ<2),得到结果.【解答】解:∵随机变量X服从正态分布N(1,σ2),∴μ=1,得对称轴是x=1.∵P(ξ<2)=0.8,∴P(ξ≥2)=P(ξ<0)=0.2,∴P(0<ξ<2)=0.6∴P(0<ξ<1)=0.3.故选:B.5.如图,平行四边形ABCD中,AB⊥BD,沿BD将△ABD折起,使面ABD⊥面BCD,连接AC,则在四面体ABCD的四个面中,互相垂直的平面的对数为()A.1

B.2

C.3

D.4参考答案:C6.已知直线,给出下列四个命题:①若②若③若④若其中正确的命题是

)A.①④

B.②④

C.①③④

D.①②④参考答案:A7.下图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[20,30)内的概率为

(

)

A.0.2

B.0.4C.0.5

D.0.6参考答案:C8.下列函数中,最小值为4的函数是(

)A. B.C.y=ex+4e﹣x D.y=log3x+logx81参考答案:C【考点】基本不等式.【专题】不等式的解法及应用.【分析】利用基本不等式可得=4,注意检验不等式使用的前提条件.【解答】解:∵ex>0,4e﹣x>0,∴=4,当且仅当ex=4e﹣x,即x=ln2时取得等号,∴y=ex+4e﹣x的最小值为4,故选C.【点评】本题考查基本不等式求函数的最值,利用基本不等式求函数最值要注意条件:“一正、二定、三相等”.9.圆锥曲线C的准线是x=–3,相应的焦点是F(1,0),如果C过定点M(5,2),那么C是(

)(A)椭圆

(B)双曲线

(C)抛物线

(D)类型不定参考答案:A10.

把89化为五进制数,则此数为(

)A.322(5)

B.323(5)

C.324(5)

D.325(5)参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11.函数的最小值为________.参考答案:412.现有10个保送上大学的名额,分配给7所学校,每校至少有1个名额,名额分配的方法共有种(用数字作答).

参考答案:

84略13.一个总体中有100个个体,随机编号为0,1,2,…,99,依编号顺序平均分成10个小组,组号依次为1,2,3,…,10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m,那么在第k小组中抽取的号码个位数字与m+k的个位数字相同.若m=6,则在第7组中抽取的号码是.参考答案:63【考点】系统抽样方法.【专题】压轴题.【分析】此问题总体中个体的个数较多,因此采用系统抽样.按题目中要求的规则抽取即可,在第k小组中抽取的号码个位数字与m+k的个位数字相同,由m=6,k=7得到要抽数字的个位数.【解答】解:∵m=6,k=7,m+k=13,∴在第7小组中抽取的号码是63.故答案为:63.【点评】当总体中个体个数较多而差异又不大时可采用系统抽样.要从容量为N的总体中抽取容量为n的样本,可将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需要的样本.14.把4个小球随机地投入4个盒子中,设表示空盒子的个数,的数学期望=参考答案:81/6415.一轮船行驶时,单位时间的燃料费u与其速度v的立方成正比,若轮船的速度为每小时10km

时,燃料费为每小时35元,其余费用每小时为560元,这部分费用不随速度而变化,求轮船速度为多少时,轮船行每千米的费用最少(轮船最高速度为bkm/小时)?参考答案:解:设轮船的燃料费u与速度v之间的关系是:u=kv3(k≠0),

由已知,当v=10时,u=35,∴35=k×103?k=,∴u=v3.

∴轮船行驶1千米的费用y=u?+560?=v2+,用导数可求得当b20时,当v=20时费用最低为42元,当b<20时,费用最低为元;

答:当b20时,当轮船速度为20km/h时,轮船行每千米的费用最少,最少费用为42元.

当b<20时,费用最低为元略16.若圆锥的表面积是,侧面展开图的圆心角是,则圆锥的体积是_______。参考答案:略17.过点(2,-4)引圆的切线,则切线方程是

。参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明:MN∥平面PAB;(2)求直线AN与平面PMN所成角的正弦值.参考答案:【考点】直线与平面所成的角;直线与平面平行的判定.【分析】(1)法一、取PB中点G,连接AG,NG,由三角形的中位线定理可得NG∥BC,且NG=,再由已知得AM∥BC,且AM=BC,得到NG∥AM,且NG=AM,说明四边形AMNG为平行四边形,可得NM∥AG,由线面平行的判定得到MN∥平面PAB;法二、证明MN∥平面PAB,转化为证明平面NEM∥平面PAB,在△PAC中,过N作NE⊥AC,垂足为E,连接ME,由已知PA⊥底面ABCD,可得PA∥NE,通过求解直角三角形得到ME∥AB,由面面平行的判定可得平面NEM∥平面PAB,则结论得证;(2)连接CM,证得CM⊥AD,进一步得到平面PNM⊥平面PAD,在平面PAD内,过A作AF⊥PM,交PM于F,连接NF,则∠ANF为直线AN与平面PMN所成角.然后求解直角三角形可得直线AN与平面PMN所成角的正弦值.【解答】(1)证明:法一、如图,取PB中点G,连接AG,NG,∵N为PC的中点,∴NG∥BC,且NG=,又AM=,BC=4,且AD∥BC,∴AM∥BC,且AM=BC,则NG∥AM,且NG=AM,∴四边形AMNG为平行四边形,则NM∥AG,∵AG?平面PAB,NM?平面PAB,∴MN∥平面PAB;法二、在△PAC中,过N作NE⊥AC,垂足为E,连接ME,在△ABC中,由已知AB=AC=3,BC=4,得cos∠ACB=,∵AD∥BC,∴cos,则sin∠EAM=,在△EAM中,∵AM=,AE=,由余弦定理得:EM==,∴cos∠AEM=,而在△ABC中,cos∠BAC=,∴cos∠AEM=cos∠BAC,即∠AEM=∠BAC,∴AB∥EM,则EM∥平面PAB.由PA⊥底面ABCD,得PA⊥AC,又NE⊥AC,∴NE∥PA,则NE∥平面PAB.∵NE∩EM=E,∴平面NEM∥平面PAB,则MN∥平面PAB;(2)解:在△AMC中,由AM=2,AC=3,cos∠MAC=,得CM2=AC2+AM2﹣2AC?AM?cos∠MAC=.∴AM2+MC2=AC2,则AM⊥MC,∵PA⊥底面ABCD,PA?平面PAD,∴平面ABCD⊥平面PAD,且平面ABCD∩平面PAD=AD,∴CM⊥平面PAD,则平面PNM⊥平面PAD.在平面PAD内,过A作AF⊥PM,交PM于F,连接NF,则∠ANF为直线AN与平面PMN所成角.在Rt△PAC中,由N是PC的中点,得AN==,在Rt△PAM中,由PA?AM=PM?AF,得AF=,∴sin.∴直线AN与平面PMN所成角的正弦值为.【点评】本题考查直线与平面平行的判定,考查直线与平面所成角的求法,考查数学转化思想方法,考查了空间想象能力和计算能力,是中档题.19.已知圆E:直线.(1)证明不论m取什么实数,直线与圆恒交于两点;(2)(文科学生做)设是圆E上任意一点,求的取值范围。(3)(理科学生做)已知为圆C的两条相互垂直的弦,垂足为M(3,1),求四边形的面积的最大值。参考答案:解(1)的方程为(x+y-4)+m(2x+y-7)=0

∵m?R

∴x+y-4=0,且2x+y-7=0,得x=3,y=1即恒过定点M(3,1).∵圆心E(1,2),|ME|=,∴点M在圆E内,从而直线恒与圆E相交于两点.(2)(3)设圆心E到的距离分别为,则四边形的面积20.(本题满分12分)给出如下程序.(其中x满足:0<x<12)程序:(1)该程序用函数关系式怎样表达.(2)画出这个程序的程序框图.参考答案:略21.已知函数(为常数,且)的图象过点.(1)求实数的值;(2)若函数,试判断

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论