版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年北京第四十四中学高二数学文模拟试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知双曲线与抛物线有一个公共的焦点,且两曲线的一个交点为,若,则双曲线的渐近线方程为(
)A.
B.
C.
D.参考答案:B略2.已知是第二象限角,()A. B. C. D.参考答案:A略3.如果,那么
(
)A.
B.
C.
D.参考答案:C4.函数是定义在R上的可导函数,则下列说法不正确的是A.若函数在时取得极值,则B.若,则函数在处取得极值C.若在定义域内恒有,则是常数函数D.函数在处的导数是一个常数参考答案:B略5.直线l:mx-y+1-m=0与圆C:x2+(y-1)2=5的位置关系是(
).(A)相切 (B)相交 (C)相离 (D)不确定参考答案:B6.对“a、b、c至少有一个是正数”的反设是
(
) A.a、b、c至少有一个是负数 B.a、b、c至少有一个是非正数 C.a、b、c都是非正数
D.a、b、c都是正数
参考答案:C略7.命题“?x∈R,2x>0”的否定是()A.?x0∈R,2>0 B.?x0∈R,2≤0C.?x∈R,2x<0 D.?x∈R,2x≤0参考答案:B【考点】命题的否定.【分析】直接利用全称命题的否定是特称命题写出结果即可.【解答】解:因为全称命题的否定是特称命题,所以命题“?x∈R,2x>0”的否定是?x0∈R,2≤0.故选:B【点评】本题考查命题的否定,特称命题与全称命题的否定关系,基本知识的考查.8.若,则A.8 B.7 C.6 D.4参考答案:A【分析】根据排列数,组合数的公式,求得,即可求解,得到答案.【详解】由题意,根据排列数、组合数的公式,可得,即,解得,故选A.【点睛】本题主要考查了排列数,组合数的应用,其中解答中熟记排列数,组合数的计算公式,准确化简、运算是解答的关键,着重考查了运算与求解能力,属于基础题.9.为虚数单位,则=(
) A. B. C. D.
参考答案:C10.已知双曲线C:的左、右焦点分别为F1,F2,O为坐标原点,倾斜角为的直线过右焦点F2且与双曲线的左支交于M点,若,则双曲线的离心率为(
)A.
B.
C.
D.参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11.正三棱锥外接球的球心为,半径为,且.则
.参考答案:12.已知点M是y=上一点,F为抛物线的焦点,A在C:(x﹣1)2+(y﹣4)2=1上,则|MA|+|MF|的最小值为.参考答案:4【考点】抛物线的简单性质.【专题】圆锥曲线的定义、性质与方程;圆锥曲线中的最值与范围问题.【分析】首先求出抛物线上的点到圆上及抛物线的焦点的距离最小的位置,然后根据三点共线求出相应的点的坐标,进一步求出最小值.【解答】解:如上图所示利用抛物线的定义知:MP=MF当M、A、P三点共线时,|MA|+|MF|的值最小即:CM⊥x轴CM所在的直线方程为:x=1与y=建立方程组解得:M(1,)|CM|=4﹣点M到圆C的最小距离为:|CM|﹣|AC|=3抛物线的准线方程:y=﹣1则:,|MA|+|MF|的值最小值为3+1=4故答案为:4【点评】本题考查的知识点:圆外一点到圆的最小距离,抛物线的准线方程,三点共线及相关的运算问题.13.已知的展开式中的常数项是____(用数字作答);参考答案:1514.抛物线y=2x2的焦点坐标是
▲
。参考答案:略15.等差数列中,,则=
.参考答案:16.某中学一天的功课表有6节课,其中上午4节,下午2节,要排语文、数学、英语、信息技术、体育、地理6节课,要求上午第一节课不排体育,数学必须排在上午,则不同排法种数是__________.参考答案:408【分析】按上午第一节课排数学和不排数学分类讨论即可.【详解】如果上午第一节课排数学,则语文、英语、信息技术、体育、地理可排在其余5节课,故有种;如果上午第一节课不排数学,则可排语文、英语、信息技术、地理任何一门,有种排法,数学应该排在第二节、第三节或第四节,有种排法,余下四节课可排余下四门课程,有种排法,故上午第一节课不排数学共有,综上,共有种不同的排法.故填408.【点睛】对于排列问题,我们有如下策略:(1)特殊位置、特殊元素优先考虑,比如某些人不能排首位等,可先考虑首位放置其他人,然后再排其他位置;(2)先选后排,比如要求所排的人来自某个范围,我们得先选出符合要求的人,再把他们放置在合适位置;(3)去杂法,也就是从反面考虑.17.若函数在其定义域内的一个子区间内不是单调函数,则实数k的取值范围是
.
参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图1,正方形ABCD的边长为,E、F分别是DC和BC的中点,H是正方形的对角线AC与EF的交点,N是正方形两对角线的交点,现沿EF将折起到的位置,使得,连结PA,PB,PD(如图2).(1)求证:;(2)求点A到平面PBD的距离.参考答案:(1)见解析(2)试题分析:(1)首先由中位线定理及已知条件推出平面,然后由线面垂直的性质定理平面,从而可使问题得证;(2)分别把和当做底面求出棱锥的体积,由此列出方程求解即可.试题解析:(1)证明:∵分别是和的中点,∴.又∵,∴,故折起后有,又∵,∴平面,又∵平面,∴,∵平面,∴平面,又∵平面,∴.(2)∵正方形的边长为,∴,∴是等腰三角形,连结,则,∴的面积.设三棱锥的高为,则三棱锥的体积为,由(1)可知是三棱锥的高,∴三棱锥的体积:,∵,即,解得,即三棱锥高为.考点:1、空间直线与直线的位置关系;2、线面垂直的判定定理与性质定理;3、三棱锥的体积.19.(本小题满分12分).设y=f(x)是二次函数,方程f(x)=0有两个相等实根,且f′(x)=2x+2,求f(x)的表达式.参考答案:解设f(x)=ax2+bx+c(a≠0),则f′(x)=2ax+b.又已知f′(x)=2x+2,∴a=1,b=2.∴f(x)=x2+2x+c.又方程f(x)=0有两个相等实根,∴判别式Δ=4-4c=0,即c=1.故f(x)=x2+2x+1.
略20.以(1,﹣1)为中点的抛物线y2=8x的弦所在直线的方程存在吗?若存在,求出直线方程;若不存在,请说明理由.参考答案:【考点】抛物线的简单性质.【分析】先设出弦的两端点的坐标然后代入到抛物线方程后两式相减,可求得直线方程的斜率,最后根据直线的点斜式可求得方程.【解答】解:设这样的直线存在,其被抛物线截得弦的两端点分别为A(x1,y1),B(x2,y2),则yi2=8x1,y22=8x2①…①中两式做差,得(y2+y1)(y2﹣y1)=8(x2﹣x1),∴kAB=﹣4.…得直线方程y+1=﹣4(x﹣1),即4x+y﹣3=0.②…将②与曲线y2=8x联立,得16x2﹣32x+9=0,△=(﹣32)2﹣4×16×9>0(必须检验!)…∴弦所在直线方程为4x+y﹣3=0.…21.已知点A(0,﹣2),椭圆E:+=1(a>b>0)的离心率为,F是椭圆的焦点,直线AF的斜率为,O为坐标原点.(Ⅰ)求E的方程;(Ⅱ)设过点A的直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l的方程.参考答案:【考点】直线与圆锥曲线的关系;椭圆的简单性质.【分析】(Ⅰ)通过离心率得到a、c关系,通过A求出a,即可求E的方程;(Ⅱ)设直线l:y=kx﹣2,设P(x1,y1),Q(x2,y2)将y=kx﹣2代入,利用△>0,求出k的范围,利用弦长公式求出|PQ|,然后求出△OPQ的面积表达式,利用换元法以及基本不等式求出最值,然后求解直线方程.【解答】解:(Ⅰ)设F(c,0),由条件知,得?又,所以a=2?,b2=a2﹣c2=1,故E的方程.….(Ⅱ)依题意当l⊥x轴不合题意,故设直线l:y=kx﹣2,设P(x1,y1),Q(x2,y2)将y=kx﹣2代入,得(1+4k2)x2﹣16kx+12=0,当△=16(4k2﹣3)>0,即时,从而??6558764又点O到直线PQ的距离,所以△OPQ的面积=,设,则t>0,,当且仅当t=2,k=±等号成立,且满足△>0,所以当△OPQ的面积最大时,l的方程为:y=x﹣2或y=﹣x﹣2.…22.(12分)(2015秋?胶州市期末)已知函数f(x)=(x2﹣3x+3)?ex的定义域为[﹣2,t],设f(﹣2)=m,f(t)=n.(1)试确定t的取值范围,使得函数f(x)在[﹣2,t]上为单调函数;(2)求证:m<n;(3)求证:对于任意的t>﹣2,总存在x0∈(﹣2,t),满足=(t﹣1)2;又若方程=(t﹣1)2;在(﹣2,t)上有唯一解,请确定t的取值范围.参考答案:【分析】(1)求导得f′(x)=(2x﹣3)?ex+(x2﹣3x+3)?ex=x(x﹣1)ex,从而可得f(x)在(﹣∞,0),(1,+∞)上递增,在(0,1)上递减,从而确定t的取值范围;(2)借助(1)可知,f(x)在x=1处取得极小值e,求出f(﹣2)=m=<e,则f(x)在[﹣2,+∞)上的最小值为f(﹣2),从而得证;(3)化简=﹣x0,从而将=(t﹣1)2化为﹣x0=(t﹣1)2,令g(x)=x2﹣x﹣(t﹣1)2,则证明方程x2﹣x﹣(t﹣1)2=0在(﹣2,t)上有解,并讨论解的个数;由二次函数的性质讨论即可.【解答】解:(1)∵f′(x)=(2x﹣3)?ex+(x2﹣3x+3)?ex=x(x﹣1)ex,由f′(x)>0可得,x>1或x<0;由f′(x)><0可得,0<x<1;∴f(x)在(﹣∞,0),(1,+∞)上递增,在(0,1)上递减,欲f(x)在[﹣2,t]上为单调函数,则﹣2<t≤0;∴t的取值范围为(﹣2,0].(2)证明:∵f(x)在(﹣∞,0),(1,+∞)上递增,在(0,1)上递减,∴f(x)在x=1处取得极小值e,又∵f(﹣2)=m=<e=f(1),∴f(x)在[﹣2,+∞)上的最小值为f(﹣2).从而当t>﹣2时,f(﹣2)<f(t),即m<n;(3)证明:∵=﹣x0,∴=(t﹣1)2可化为﹣x0=(t﹣1)2,令g(x)=x2﹣x﹣(t﹣1)2,则证明方程x2﹣x﹣(t﹣1)2=0在(﹣2,t)上有解,并讨论解的个数.∵g(﹣2)=6﹣(t﹣1)2=﹣(t+2)(t﹣4),g(t)=t(t﹣1)﹣(t﹣1)2=(t+2)(t﹣1),①当t>4或﹣2<t<1时,g(﹣2)?g(t)<0,则方程x2﹣x﹣(t﹣1)2=0在(﹣2,t)上有且只有一解;②当1<t<4时,g(﹣2)>0,且g(t)>0,又∵g(0)=﹣(t﹣1)2<0,∴方程x2﹣x﹣(t﹣1)2=0在(﹣2,t)上有解,且有两解;③当t=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 政府合同指定打印机品牌
- 酒店预订信息咨询服务合同
- 东莞市房产买卖协议样式
- 合同修正新约协议
- 易操作信息咨询服务合同
- 煤炭运输合作协议样本
- 商务礼品合同模板
- 借款抵押协议范例分析
- 电视剧拍摄授权协议
- 文明停车维护市容的规则
- 汽车底盘差速器课件
- 危重症患者护理
- 虚拟现实直播兼职主播协议
- 2025届浙江省嘉兴市重点名校高三物理第一学期期中复习检测模拟试题含解析
- 预案演练知识培训
- 第三单元 勇担社会责任(复习课件)-八年级道德与法治上册同步备课系列(统编版)
- 2024-2025学年广东省佛山市S6高质量发展联盟高二上学期期中联考数学试卷(含答案)
- 第14课《背影》课件(共43张t)
- 仁爱版八年级英语上册-Unit-3-Topic-3-Section-A-课件(共26张PPT)
- 村庄规划服务投标方案(技术方案)
- 环境空气自动监测站运维服务投标方案
评论
0/150
提交评论