版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省忻州市五寨县胡会乡中学2022年高二数学文期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.P,Q,R为正方体表面上的三点,在正方体三个两两垂直的面上的射影如下图,则下列关于过点P,Q,R三点的截面结论正确的是
(
)
A.这个截面是一个三角形
B.这个截面是四边形C.这个截面是六边形
D.这个截面过正方体的一个顶点参考答案:C2.已知,条件p:“a>b”,条件q:“”,则p是q的(
)A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件参考答案:A3.已知
的一个内角为120o,并且三边长构成公差为4的等差数列,则的面积为(
)A.30
B.
C.
D.
参考答案:B4.过点P(﹣,﹣1)的直线l与圆x2+y2=1有公共点,则直线l的倾斜角的取值范围是()A.(0,] B.(0,] C.[0,] D.[0,]参考答案:D【考点】直线与圆的位置关系.【分析】用点斜式设出直线方程,根据直线和圆有交点、圆心到直线的距离小于或等于半径可得≤1,由此求得斜率k的范围,可得倾斜角的范围.【解答】解:由题意可得点P(﹣,﹣1)在圆x2+y2=1的外部,故要求的直线的斜率一定存在,设为k,则直线方程为y+1=k(x+),即kx﹣y+k﹣1=0.根据直线和圆有交点、圆心到直线的距离小于或等于半径可得≤1,即3k2﹣2k+1≤k2+1,解得0≤k≤,故直线l的倾斜角的取值范围是[0,],故选:D.【点评】本题主要考查用点斜式求直线方程,点到直线的距离公式的应用,体现了转化的数学思想,属于中档题.5.如图,在四棱锥P﹣ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,O为AD中点,M是棱PC上的点,AD=2BC.(1)求证:平面POB⊥平面PAD;(2)若点M是棱PC的中点,求证:PA∥平面BMO.参考答案:【考点】直线与平面平行的判定;平面与平面垂直的判定.【分析】(1)由已知得四边形BCDO为平行四边形,OB⊥AD,从而BO⊥平面PAD,由此能证明平面POB⊥平面PAD.(2)连结AC,交BO于N,连结MN,由已知得MN∥PA,由此能证明PA∥平面BMO.【解答】(1)证明:∵AD∥BC,BC=AD,O为AD的中点,∴四边形BCDO为平行四边形,∴CD∥BO.
∵∠ADC=90°,∴∠AOB=90°
即OB⊥AD.又∵平面PAD⊥平面ABCD
且平面PAD∩平面ABCD=AD,∴BO⊥平面PAD.∵BO?平面POB,∴平面POB⊥平面PAD.(2)证明:连结AC,交BO于N,连结MN,∵AD∥BC,O为AD中点,AD=2BC,∴N是AC的中点,又点M是棱PC的中点,∴MN∥PA,∵PA?平面BMO,MN?平面BMO,∴PA∥平面BMO.6.在△ABC中,若∠A∶∠B∶∠C=1∶2∶3,则a∶b∶c等于(
)A
1∶2∶3
B
3∶2∶1
C
2∶∶1
D
1∶∶2参考答案:D略7.过抛物线y2=2px(p>0)的焦点F,且倾斜角为的直线与抛物线交于A,B两点,若弦AB的垂直平分线经过点(0,2),则p等于()A. B. C. D.参考答案:C【考点】抛物线的简单性质.【分析】可以求出抛物线的焦点坐标,从而可以写出弦AB所在直线方程为,可设A(x1,y1),B(x2,y2),直线AB的方程和抛物线方程联立消去x可得到关于y的一元二次方程,由韦达定理即可求出弦AB的中点坐标为,而弦AB的垂直平分线方程可写出为y﹣2=﹣x,弦中点坐标带入该方程便可求出p的值.【解答】解:,过焦点F且倾斜角为的直线方程为:,设A(x1,y1),B(x2,y2);由得,y2﹣2py﹣p2=0;∴y1+y2=2p,x1+x2=3p;∴弦AB的中点坐标为;弦AB的垂直平分线方程为y﹣2=﹣x,弦AB的中点在该直线上;∴;解得.故选:C.【点评】考查抛物线的标准方程,抛物线的焦点,以及根据直线的倾斜角求斜率,直线的点斜式方程,韦达定理.8.若直线的参数方程为,则直线的斜率为(
).
参考答案:D略9.已知点为双曲线上一点,则它的离心率为()A. B. C. D.参考答案:B【分析】将的坐标代入双曲线,求得的值,进而求得的值和离心率.【详解】将的坐标代入双曲线方程得,解得,故,所以离心率为,故选B.10.平行于直线2x+y+1=0且与圆x2+y2=5相切的直线的方程是()A.2x+y+5=0或2x+y﹣5=0 B.2x+y+=0或2x+y﹣=0C.2x﹣y+5=0或2x﹣y﹣5=0 D.2x﹣y+=0或2x﹣y﹣=0参考答案:A【考点】圆的切线方程.【专题】计算题;直线与圆.【分析】设出所求直线方程,利用圆心到直线的距离等于半径,求出直线方程中的变量,即可求出直线方程.【解答】解:设所求直线方程为2x+y+b=0,则,所以=,所以b=±5,所以所求直线方程为:2x+y+5=0或2x+y﹣5=0故选:A.【点评】本题考查两条直线平行的判定,圆的切线方程,考查计算能力,是基础题.二、填空题:本大题共7小题,每小题4分,共28分11.已知下列命题(其中a,b为直线,α为平面):①若一条直线垂直于平面内无数条直线,则这条直线与这个平面垂直;②若一条直线平行于一个平面,则垂直于这条直线的直线一定垂直于这个平面;③若a∥α,b⊥α,则a⊥b;④若a⊥b,则过b有惟一α与a垂直.上述四个命题中,是真命题的有.(填序号)参考答案:③④【考点】空间中直线与平面之间的位置关系.【分析】①平面内无数条直线均为平行线时,不能得出直线与这个平面垂直,故①错误;②垂直于这条直线的直线与这个平面可以是任何的位置关系,故②错误.若a∥α,b⊥α,则根据线面平行、垂直的性质,必有a⊥b.【解答】解:①平面内无数条直线均为平行线时,不能得出直线与这个平面垂直,将“无数条”改为“所有”才正确;故①错误;②垂直于这条直线的直线与这个平面可以是任何的位置关系,有可能是平行、相交、线在面内,故②错误.③若a∥α,b⊥α,则根据线面平行、垂直的性质,必有a⊥b,正确;④若a⊥b,则过b有且只有一个平面与a垂直,显然正确.故答案为③④.12.参考答案:略13.从0,2中选一个数字,从1,3,5中选两个数字,组成没有重复数字的三位数,其中奇数的个数为________(用数字作答)
参考答案:1814.设椭圆与双曲线的离心率分别为,,有下列结论:①;②;③;④;⑤.其中正确的是
.
参考答案:略15.设变量x,y满足约束条件,则目标函数的最大值为. 参考答案:【考点】简单线性规划. 【专题】计算题;作图题;数形结合法;不等式. 【分析】若求目标函数的最大值,则求2x+y的最小值,从而化为线性规划求解即可. 【解答】解:若求目标函数的最大值, 则求2x+y的最小值, 作平面区域如下, , 结合图象可知, 过点A(1,1)时,2x+y有最小值3, 故目标函数的最大值为, 故答案为:. 【点评】本题考查了线性规划的变形应用及数形结合的思想应用,同时考查了指数函数的单调性的应用. 16.由曲线y=x2+2,x+y=4所围成的封闭图形的面积为________.参考答案:.【分析】先求出两曲线的交点坐标,确定被积函数以及被积区间,然后利用定积分公式可计算出所求区域的面积.【详解】联立,得或,当时,可知,因此,所求封闭区域的面积为
,故答案为:.【点睛】本题考查定积分的几何意义,利用定积分计算曲边三角形的面积,解题的关键就是确定出被积函数以及被积区间,结合微积分基本定理进行计算,考查分析问题的能力和计算能力,属于中等题.17.曲线在x=l处的切线的斜率是_________。参考答案:2e【分析】先求得曲线对应函数的导数,由此求得切线的斜率.【详解】依题意,,当时,导数为,即此时切线的斜率为.【点睛】本小题主要考查乘法的导数,考查切线斜率的概念和求法,属于基础题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知点是离心率为的椭圆:上的一点.斜率为的直线交椭圆于、两点,且、、三点不重合.(Ⅰ)求椭圆的方程;(Ⅱ)的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由?
参考答案:解:(Ⅰ),
,,,
(Ⅱ)设直线的方程为----①
-----②,设为点到直线:的距离,,当且仅当时取等号.因为,所以当时,的面积最大,最大值为.
略19.解关于x的不等式:.参考答案:【考点】其他不等式的解法.【分析】转化分式不等式一侧为0,对x的系数是否为0,因式的根的大小讨论,分别求出不等式的解集即可.【解答】解:原不等式化为…当m=0时,原不等式化为﹣x﹣1>0,解集为(﹣∞,﹣1);
…当m>0时,原不等式化为,又,所以原不等式的解集为;
…当m<0时,原不等式化为,当时,即﹣1<m<0,所以原不等式的解集为;当时,即m=﹣1,所以原不等式的解集为?;当时,即m<﹣1,所以原不等式的解集为;…综上所述,当m=0时,原不等式解集为(﹣∞,﹣1);当m>0时,原不等式的解集为;当﹣1<m<0时,原不等式的解集为;当m=﹣1时,原不等式的解集为?;当m<﹣1时,原不等式的解集为;
…20.(14分)已知椭圆的中心在原点,一个长轴的端点为P(0,﹣2),离心率为e=,过点P作斜率为k1,k2的直线PA,PB,分别交椭圆于点A,B.(1)求椭圆的方程;(2)若k1?k2=2,证明直线AB过定点,并求出该定点.参考答案:【考点】恒过定点的直线;椭圆的标准方程.【分析】(1)设椭圆的方程为(a>b>0),根据题意建立关于a、b的方程组解出a、b之值,即可得到椭圆的方程;(2)由题意得直线PA方程为y=k1x﹣2,与椭圆方程消去y得到关于x的方程,解出A点坐标含有k1的式子,同理得到B点坐标含有k2的式子,利用直线的两点式方程列式并结合k1k2=2化简整理,可证出AB方程当x=0时y=﹣6,由此可得直线AB必过定点Q(0,﹣6).【解答】解:(1)∵椭圆的中心在原点,一个长轴的端点为P(0,﹣2),∴设椭圆的方程为(a>b>0),可得a=2,且,解之得b=1,∴椭圆的方程为:;(2)由题意,可得直线PA方程为y=k1x﹣2,与椭圆方程消去y,得(1+)x2﹣k1x=0,解之得x=0或x=由P的坐标为(0,﹣2),得A(,k1?﹣2),即(,)同理可行B的坐标为(,),结合题意k1?k2=2,化简得B(,)因此,直线AB的方程为,化简得=(),令x=0得==﹣6,由此可得直线AB过定点定点Q(0,﹣6).【点评】本题给出椭圆满足的条件,求它的方程并证明直线经过定点.着重考查了椭圆的标准方程与简单几何性质、直线的基本量与基本形式等知识,属于中档题.21.(13分)设有关的一元二次方程.(1)若是从1,2,3这三个数中任取的一个数,是从0,1,2这三个数中任取的一个数,求上述方程有实根的概率;
(2)若是从区间[0,3]中任取的一个数,是从区间[0,2]中任取的一个数,求上述方程有实根的概率.
参考答案:(1)由题意,知基本事件共有9个,可用有序实数对表示为(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2),其中第一个表示的取值,第二个表示的取值......................................2分由方程的..........................4分方程有实根包含7个基本事件,即(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2).此时方程有实根的概率为.................6分(2)的取值所构成的区域如图所示,其中........8分构成“方程有实根”这一事件的区域为(图中阴影部分).此时所求概率为....................13分22.(本题满分12分)在平
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 景区巡逻保安服务协议
- 2024年督察科副科长工作计划(4篇)
- 2024消费借款合同
- 电梯套安装合同模板
- 科研试剂销售合同范例
- 检品公司合同范例
- 代理销售系列汽车合同范例
- 延期续借借款合同范例
- 仓储煤场租赁与煤炭储存合同2024年度
- 二零二四年农产品批发市场建设运营合同
- 南航订座系统培训-详细版课件
- 0-3岁婴幼儿保育与教育-课件
- 易栓症教学讲解课件
- (完整版)单板硬件调试报告
- 化妆师技能理论考试题库大全(汇总版、600题)
- 职业危害因素监测检测记录表
- 内照射的防护课件
- 厨房灶台灭火装置安装说明
- 2022新闻联播播报PPT通用模板
- 【课件】 我们怎样鉴赏美术作品 课件-2022-2023学年高中美术湘美版(2019)美术鉴赏
- 国家一等奖《包身工》优质课件
评论
0/150
提交评论