版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年广西壮族自治区柳州市柳城县中学高二数学文期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若函数是R上的单调函数,则实数m的取值范围是(
).A. B. C. D.参考答案:C若函数y=x3+x2+mx+1是R上的单调函数,只需y′=3x2+2x+m≥0恒成立,即△=4﹣12m≤0,∴m≥.故选:C.2.已知双曲线﹣=1(a>b>0)的一条渐近线与椭圆+y2=1交于P.Q两点.F为椭圆右焦点,且PF⊥QF,则双曲线的离心率为()A. B. C. D.参考答案:A【考点】双曲线的简单性质;椭圆的简单性质.【分析】由题意PQ=2=4,设直线PQ的方程为y=x,代入+y2=1,可得x=±,利用弦长公式,建立方程,即可得出结论.【解答】解:由题意PQ=2=4,设直线PQ的方程为y=x,代入+y2=1,可得x=±,∴|PQ|=?2=4,∴5c2=4a2+20b2,∴e==,故选:A.【点评】本题考查椭圆的方程与性质,考查双曲线的离心率,考查弦长公式,考查学生分析解决问题的能力,属于中档题.3.设等差数列的前项和为,若,,则当取最小值时,等于(
)A.6
B.7
C.8
D.9参考答案:A略4.在等差数列{an}中,已知前15项之和S15=90,那么a8=(
) A.3 B.4 C.6 D.12参考答案:C考点:等差数列的前n项和;等差数列的通项公式.专题:计算题.分析:由题意可得:S15==90,由等差数列的性质可得a1+a15=2a8,代入可得答案.解答: 解:由题意可得:S15==90,由等差数列的性质可得a1+a15=2a8,故15a8=90,解得a8=6,故选C点评:本题考查等差数列的性质和求和公式,属基础题.5.函数的图象在点(0,1)处的切线方程为(
)A.
B.
C.
D.参考答案:B6.某校高二共有8个班,现有10个三好生名额需分配到各班,每班至少1个名额的分配方法有(
)种.ks5uA.16
B.24
C.36
D.64参考答案:C略7.从装有个球的口袋中取出个球(),共有种取法。在这种取法中,可以分成一个指定的球被取到和未被取到两类:一类是该指定的球未被取到,共有种取法;另一类是该指定的球被取到,共有种取法。显然,即有等式:成立。试根据上述思想,则有:(其中)为(
)A. B. C. D.参考答案:A略8.不论为何值,直线与双曲线总有公共点,实数的取值范围是(
)A.
B.
C.
D.参考答案:B9.设变量x,y满足约束条件,则z=4x+3y的最大值是()A.7 B.8 C.9 D.10参考答案:C【考点】简单线性规划.【分析】作出不等式组对应的平面区域,利用z的几何意义利用数形结合即可得到结论.【解答】解:由约束条件作出其所确定的平面区域(阴影部分),平移直线z=4x+3y,由图象可知当直线z=4x+3y经过点A时,目标函数z=4x+3y取得最大值,由,解得,即A(),即z=4××3=9,故z的最大值为9.故选:C.10.设是直线,,是两个不同的平面,则下列结论正确的是().A、若∥,∥,则∥
B、若∥,⊥,则⊥C、若⊥,⊥,则⊥
D、若⊥,∥,则⊥参考答案:B略二、填空题:本大题共7小题,每小题4分,共28分11.若执行如下图所示的框图,输入x1=1,x2=2,x3=4,x4=8,则输出的数等于________.参考答案:12.圆心在抛物线y=x2上,并且和该抛物线的准线及y轴都相切的圆的标准方程为.参考答案:(x±1)2+(y﹣)2=1【考点】抛物线的简单性质.【分析】由题意设出圆心坐标,由相切列出方程求出圆心坐标和半径,代入圆的标准方程即可.【解答】解:由题意知,设P(t,t2)为圆心,且准线方程为y=﹣,∵与抛物线的准线及y轴相切,∴|t|=t2+,∴t=±1.∴圆的标准方程为(x±1)2+(y﹣)2=1.故答案为:(x±1)2+(y﹣)2=1.13.数一数,三棱锥、三棱柱、四棱锥、四棱柱,正方体,正八面体等的几何体的面数(F),顶点数(V),棱数(E),由此归纳出一般的凸多面体的面数(F),顶点数(V),棱数(E)满足的关系为:
。参考答案:14.若直线与曲线恰有两个不同的的交点,则____________.参考答案:15.,,若,则实数a的值为_______.参考答案:1【分析】由题得,解方程即得的值.【详解】由题得,解之得=1.当=1时两直线平行.故答案:116.已知F1,F2是椭圆和双曲线的公共焦点,P是它们的一个公共点,且,椭圆和双曲线的离心率分别为e1、e2,则=
.参考答案:2【考点】椭圆的简单性质.【分析】先设椭圆的长半轴长为a1,双曲线的半实轴长a2,焦距2c.因为涉及椭圆及双曲线离心率的问题,所以需要找a1,a2,c之间的关系,而根据椭圆及双曲线的定义可以用a1,a2表示出|PF1|,|PF2|并且,,在△F1PF2中根据勾股定理可得到:,该式可变成:=2.【解答】解:如图,设椭圆的长半轴长为a1,双曲线的半实轴长为a2,则根据椭圆及双曲线的定义:得|PF1|+|PF2|=2a1+a2,∴|PF1|﹣||PF2|=2a2∴|PF1|=a1+a2,|PF2|=a1﹣a2,设|F1F2|=2c,∠F1PF2=,在△PF1F2中由勾股定理得,4c2=(a1+a2)2+(a1﹣a2)2∴化简得:该式可变成:=2.故答案为:217.已知矩阵,,则=___________.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.设是两个不共线的向量,,若A、B、D三点共线,求k的值.参考答案:即由于可得:
故19.(本小题满分12分)设双曲线与直线相交于两个不同点(1)求双曲线的离心率的取值范围;(2)设直线与轴交点为,且,求的值.参考答案:(1)且;(2).20.已知过点的动直线与圆相交于两点,是中点,与直线相交于.(1)当与垂直时,求的方程;
(2)当时,求直线的方程;(3)探究是否与直线的倾斜角有关?若无关,求出其值;若有关,请说明理由.参考答案:解:(1)与垂直,且故直线方程为即(2)①当直线与轴垂直时,易知符合题意.②当直线与轴不垂直时,设直线的方程为即,,则由,得,直线故直线的方程为或(3)①当与轴垂直时,易得
则又,.②当的斜率存在时,设直线的方程为则由得
则综上所述,与直线的斜率无关,且.略21.分别求适合下列条件圆锥曲线的标准方程:
(1)
焦点为且过点椭圆,(2)与双曲线有相同的渐近线,且过点(2,2)的双曲线参考答案:22.(本小题满分12分)各项均不
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 资产评估服务合同格式
- 身心和谐保证书
- 软化水供应合同
- 进口发电机购销协议
- 连接大学与中学数学的纽带
- 酒店客房用品供应商合同
- 重型设备运输招标细节
- 钢筋工程分包协议书样本
- 铝合金门窗工程招标细则
- 2024年版高校校长职务聘请协议书2篇
- 2024年国家公务员考试《申论》真题(副省级)及参考答案
- 人美版美术七年级上册第四单元《第2课 校园创美》课件
- 【9语期中】合肥市包河区2024-2025学年九年级上学期11月期中语文试题
- 2024年度LED显示屏广告发布权转让合同
- 2023年四川广汉三星堆博物馆招聘事业单位人员考试真题
- 基于单片机的粮仓多点温湿度监控系统设计-毕业设计说明书
- 2024年高考真题-历史(天津卷) 含解析
- Unit6《Is he your grandpa?》-2024-2025学年三年级上册英语单元测试卷(译林版三起 2024新教材)
- 《浦东机场使用手册(V7-R3版)专项培训》题库
- 九年级化学上册(沪教版2024)新教材解读课件
- 大学生心理健康智慧树知到期末考试答案章节答案2024年中北大学
评论
0/150
提交评论