数学(新高考专用2024新题型)01金卷:2024年高考第二次模拟考试(考试版)A4_第1页
数学(新高考专用2024新题型)01金卷:2024年高考第二次模拟考试(考试版)A4_第2页
数学(新高考专用2024新题型)01金卷:2024年高考第二次模拟考试(考试版)A4_第3页
数学(新高考专用2024新题型)01金卷:2024年高考第二次模拟考试(考试版)A4_第4页
数学(新高考专用2024新题型)01金卷:2024年高考第二次模拟考试(考试版)A4_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年高考第二次模拟考试高三数学(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。写在本试卷上无效。3.回答第Ⅱ卷时,将答案写在答题卡上。写在本试卷上无效。4.考试结束后,将本试卷和答题卡一并交回。第Ⅰ卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,则()A. B. C.,或 D.2.已知复数(,且),且为纯虚数,则()A.1 B. C. D.3.已知向量,,若与共线,则向量在向量上的投影向量为()A. B. C. D.4.“”是“”()A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件5.有甲、乙等五人到三家企业去应聘,若每人至多被一家企业录用,每家企业至少录用其中一人且甲、乙两人不能被同一家企业录用,则不同的录用情况种数是()A.60B.114C.278 D.336 6.已知:,点,若上总存在,两点使得为等边三角形,则的取值范围是()A. B.C. D.7.已知中,,,是边上的动点.若平面,,且与面所成角的正弦值的最大值为,则三棱锥的外接球的表面积为()A. B. C. D.8.加斯帕尔-蒙日是1819世纪法国著名的几何学家.如图,他在研究圆锥曲线时发现:椭圆的任意两条互相垂直的切线的交点都在同一个圆上,其圆心是椭圆的中心,这个圆被称为“蒙日圆”.若长方形的四边均与椭圆相切,则下列说法错误的是()A.椭圆的离心率为 B.椭圆的蒙日圆方程为C.若为正方形,则的边长为 D.长方形的面积的最大值为18二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知抛物线的焦点为,过点的直线交于两个不同点,则下列结论正确的是()A.的最小值是6 B.若点,则的最小值是4C. D.若,则直线的斜率为10.已知双曲线的左、右焦点别为,,过点的直线l与双曲线的右支相交于两点,则()A.若的两条渐近线相互垂直,则B.若的离心率为,则的实轴长为C.若,则D.当变化时,周长的最小值为11.在棱长为2的正方体中,分别是棱的中点,则()A.与是异面直线B.存在点,使得,且平面C.与平面所成角的余弦值为D.点到平面的距离为三、填空题:本题共3小题,每小题5分,共15分.12.若二项式的展开式中二项式系数之和为64,则二项展开式中系数最大的项为13.若函数的图像上存在两条互相垂直的切线,则实数是__________.14.若过点的直线自左往右交抛物线及圆于四点,则的最小值为________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知数列的前n项和为,且对于任意的都有.(1)求数列的通项公式;(2)记数列的前n项中的最大值为,最小值为,令,求数列的前20项和.16.(15分)灯带是生活中常见的一种装饰材料,已知某款灯带的安全使用寿命为5年,灯带上照明的灯珠为易损配件,该灯珠的零售价为4元/只,但在购买灯带时可以以零售价五折的价格购买备用灯珠,该灯带销售老板为了给某顾客节省装饰及后期维护的支出,提供了150条这款灯带在安全使用寿命内更换的灯珠数量的数据,数据如图所示.以这150条灯带在安全使用寿命内更换的灯珠数量的频率代替1条灯带更换的灯珠数量发生的概率,若该顾客买1盒此款灯带,每盒有2条灯带,记X表示这1盒灯带在安全使用寿命内更换的灯珠数量,n表示该顾客购买1盒灯带的同时购买的备用灯珠数量.(1)求的分布列;(2)若满足的n的最小值为,求;(3)在灯带安全使用寿命期内,以购买替换灯珠所需总费用的期望值为依据,比较与哪种方案更优.17.(15分)如图,在三棱柱中,直线平面ABC,平面平面.(1)求证:;(2)若,在棱上是否存在一点,使二面角的余弦值为?若存在,求的值;若不存在,请说明理由.18.(17分)已知函数.(1)若直线与函数的图象相切,求实数a的值;(2)若函数有两个极值点和,且,证明:.(e为自然对数的底数).19.(17分)阿波罗尼斯是古希腊著名数学家,他的主要研究成果集中在他的代表作《圆锥曲线》一书中.阿波罗尼斯圆是他的研究成果之一,指的是已知动点与两定点Q,P的距离之比是一个常数,那么动点M的轨迹就是阿波罗尼斯圆,圆心在直线PQ上.已知动点M的轨迹是阿波罗尼斯圆,其方程为,定点分别为椭圆的右焦点与右顶点A,且椭圆C的离心率为(1)求椭圆的标准方程;(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论