版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省三台县2023-2024学年初中数学毕业考试模拟冲刺卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.一元二次方程x2﹣5x﹣6=0的根是()A.x1=1,x2=6 B.x1=2,x2=3 C.x1=1,x2=﹣6 D.x1=﹣1,x2=62.计算±的值为()A.±3 B.±9 C.3 D.93.下面的图形是轴对称图形,又是中心对称图形的有()A.1个 B.2个 C.3个 D.4个4.下列计算正确的是()A.()2=±8 B.+=6 C.(﹣)0=0 D.(x﹣2y)﹣3=5.y=(m﹣1)x|m|+3m表示一次函数,则m等于()A.1 B.﹣1 C.0或﹣1 D.1或﹣16.2017年新设了雄安新区,周边经济受到刺激综合实力大幅跃升,其中某地区生产总值预计可增长到305.5亿元其中305.5亿用科学记数法表示为()A.305.5×104B.3.055×102C.3.055×1010D.3.055×10117.已知点A、B、C是直径为6cm的⊙O上的点,且AB=3cm,AC=3cm,则∠BAC的度数为()A.15°
B.75°或15°
C.105°或15°
D.75°或105°8.已知:如图,在平面直角坐标系xOy中,等边△AOB的边长为6,点C在边OA上,点D在边AB上,且OC=3BD,反比例函数y=(k≠0)的图象恰好经过点C和点D,则k的值为()A. B. C. D.9.下列二次函数中,图象以直线x=2为对称轴、且经过点(0,1)的是()A.y=(x﹣2)2+1B.y=(x+2)2+1C.y=(x﹣2)2﹣3D.y=(x+2)2﹣310.下列各图中,既可经过平移,又可经过旋转,由图形①得到图形②的是()A. B. C. D.11.如图,直线y=kx+b与y轴交于点(0,3)、与x轴交于点(a,0),当a满足-3≤a<0时,k的取值范围是()A.-1≤k<0 B.1≤k≤3 C.k≥1 D.k≥312.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点A,B,C.现有下面四个推断:①抛物线开口向下;②当x=-2时,y取最大值;③当m<4时,关于x的一元二次方程ax2+bx+c=m必有两个不相等的实数根;④直线y=kx+c(k≠0)经过点A,C,当kx+c>ax2+bx+c时,x的取值范围是-4<x<0;其中推断正确的是()A.①② B.①③ C.①③④ D.②③④二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,平行于x轴的直线AC分别交抛物线y1=x2(x≥0)与y2=(x≥0)于B、C两点,过点C作y轴的平行线交y1于点D,直线DE∥AC,交y2于点E,则=______.14.若a2﹣2a﹣4=0,则5+4a﹣2a2=_____.15.分解因式:x2y﹣xy2=_____.16.8的算术平方根是_____.17.分解因式:_____.18.如果一个正多边形的中心角等于,那么这个正多边形的边数是__________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)计算:12+(13)﹣2﹣|1﹣3|﹣(π+1)020.(6分)某保健品厂每天生产A,B两种品牌的保健品共600瓶,A,B两种产品每瓶的成本和利润如表,设每天生产A产品x瓶,生产这两种产品每天共获利y元.(1)请求出y关于x的函数关系式;(2)如果该厂每天至少投入成本26400元,那么每天至少获利多少元?(3)该厂每天生产的A,B两种产品被某经销商全部订购,厂家对A产品进行让利,每瓶利润降低元,厂家如何生产可使每天获利最大?最大利润是多少?AB成本(元/瓶)5035利润(元/瓶)201521.(6分)如图抛物线y=ax2+bx,过点A(4,0)和点B(6,2),四边形OCBA是平行四边形,点M(t,0)为x轴正半轴上的点,点N为射线AB上的点,且AN=OM,点D为抛物线的顶点.(1)求抛物线的解析式,并直接写出点D的坐标;(2)当△AMN的周长最小时,求t的值;(3)如图②,过点M作ME⊥x轴,交抛物线y=ax2+bx于点E,连接EM,AE,当△AME与△DOC相似时.请直接写出所有符合条件的点M坐标.22.(8分)先化简,再求值:,其中x=-523.(8分)某地一路段修建,甲队单独完成这项工程需要60天,若由甲队先做5天,再由甲、乙两队合作9天,共完成这项工程的三分之一.(1)求甲、乙两队合作完成这项工程需要多少天?(2)若甲队的工作效率提高20%,乙队工作效率提高50%,甲队施工1天需付工程款4万元,乙队施工一天需付工程款2.5万元,现由甲乙两队合作若干天后,再由乙队完成剩余部分,在完成此项工程的工程款不超过190万元的条件下要求尽早完成此项工程,则甲、乙两队至多要合作多少天?24.(10分)用你发现的规律解答下列问题.┅┅计算.探究.(用含有的式子表示)若的值为,求的值.25.(10分)如图,在正方形ABCD的外侧,作两个等边三角形ABE和ADF,连结ED与FC交于点M,则图中≌,可知,求得______.如图,在矩形的外侧,作两个等边三角形ABE和ADF,连结ED与FC交于点M.求证:.若,求的度数.26.(12分)(1)计算:﹣4sin31°+(2115﹣π)1﹣(﹣3)2(2)先化简,再求值:1﹣,其中x、y满足|x﹣2|+(2x﹣y﹣3)2=1.27.(12分)某街道需要铺设管线的总长为9000,计划由甲队施工,每天完成150.工作一段时间后,因为天气原因,想要40天完工,所以增加了乙队.如图表示剩余管线的长度与甲队工作时间(天)之间的函数关系图象.(1)直接写出点的坐标;(2)求线段所对应的函数解析式,并写出自变量的取值范围;(3)直接写出乙队工作25天后剩余管线的长度.
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、D【解析】
本题应对原方程进行因式分解,得出(x-6)(x+1)=1,然后根据“两式相乘值为1,这两式中至少有一式值为1.”来解题.【详解】x2-5x-6=1(x-6)(x+1)=1x1=-1,x2=6故选D.【点睛】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的提点灵活选用合适的方法.本题运用的是因式分解法.2、B【解析】
∵(±9)2=81,∴±±9.故选B.3、B【解析】
根据轴对称图形和中心对称图形的定义对各个图形进行逐一分析即可.【详解】解:第一个图形是轴对称图形,但不是中心对称图形;第二个图形是中心对称图形,但不是轴对称图形;第三个图形既是轴对称图形,又是中心对称图形;第四个图形即是轴对称图形,又是中心对称图形;∴既是轴对称图形,又是中心对称图形的有两个,故选:B.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180°后两部分重合.4、D【解析】
各项中每项计算得到结果,即可作出判断.【详解】解:A.原式=8,错误;B.原式=2+4,错误;C.原式=1,错误;D.原式=x6y﹣3=,正确.故选D.【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.5、B【解析】由一次函数的定义知,|m|=1且m-1≠0,所以m=-1,故选B.6、C【解析】解:305.5亿=3.055×1.故选C.7、C【解析】解:如图1.∵AD为直径,∴∠ABD=∠ACD=90°.在Rt△ABD中,AD=6,AB=3,则∠BDA=30°,∠BAD=60°.在Rt△ABD中,AD=6,AC=3,∠CAD=45°,则∠BAC=105°;如图2,.∵AD为直径,∴∠ABD=∠ABC=90°.在Rt△ABD中,AD=6,AB=3,则∠BDA=30°,∠BAD=60°.在Rt△ABC中,AD=6,AC=3,∠CAD=45°,则∠BAC=15°.故选C.点睛:本题考查的是圆周角定理和锐角三角函数的知识,掌握直径所对的圆周角是直径和熟记特殊角的三角函数值是解题的关键,注意分情况讨论思想的运用.8、A【解析】试题分析:过点C作CE⊥x轴于点E,过点D作DF⊥x轴于点F,如图所示.设BD=a,则OC=3a.∵△AOB为边长为1的等边三角形,∴∠COE=∠DBF=10°,OB=1.在Rt△COE中,∠COE=10°,∠CEO=90°,OC=3a,∴∠OCE=30°,∴OE=a,CE==a,∴点C(a,a).同理,可求出点D的坐标为(1﹣a,a).∵反比例函数(k≠0)的图象恰好经过点C和点D,∴k=a×a=(1﹣a)×a,∴a=,k=.故选A.9、C【解析】试题分析:根据顶点式,即A、C两个选项的对称轴都为x=2,再将(0,1)代入,符合的式子为C选项考点:二次函数的顶点式、对称轴点评:本题考查学生对二次函数顶点式的掌握,难度较小,二次函数的顶点式解析式为y=(x-a)2+h,顶点坐标为10、D【解析】A,B,C只能通过旋转得到,D既可经过平移,又可经过旋转得到,故选D.11、C【解析】
解:把点(0,2)(a,0)代入y=kx+b,得b=2.则a=-3∵-3≤a<0,∴-3≤-3解得:k≥2.故选C.【点睛】本题考查一次函数与一元一次不等式,属于综合题,难度不大.12、B【解析】
结合函数图象,利用二次函数的对称性,恰当使用排除法,以及根据函数图象与不等式的关系可以得出正确答案.【详解】解:①由图象可知,抛物线开口向下,所以①正确;
②若当x=-2时,y取最大值,则由于点A和点B到x=-2的距离相等,这两点的纵坐标应该相等,但是图中点A和点B的纵坐标显然不相等,所以②错误,从而排除掉A和D;
剩下的选项中都有③,所以③是正确的;
易知直线y=kx+c(k≠0)经过点A,C,当kx+c>ax2+bx+c时,x的取值范围是x<-4或x>0,从而④错误.故选:B.【点睛】本题考查二次函数的图象,二次函数的对称性,以及二次函数与一元二次方程,二次函数与不等式的关系,属于较复杂的二次函数综合选择题.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、3﹣【解析】
首先设点B的横坐标,由点B在抛物线y1=x2(x≥0)上,得出点B的坐标,再由平行,得出A和C的坐标,然后由CD平行于y轴,得出D的坐标,再由DE∥AC,得出E的坐标,即可得出DE和AB,进而得解.【详解】设点B的横坐标为,则∵平行于x轴的直线AC∴又∵CD平行于y轴∴又∵DE∥AC∴∴∴=3﹣【点睛】此题主要考查抛物线中的坐标求解,关键是利用平行的性质.14、-3【解析】试题解析:∵即∴原式故答案为15、xy(x﹣y)【解析】原式=xy(x﹣y).故答案为xy(x﹣y).16、2.【解析】试题分析:本题主要考查的是算术平方根的定义,掌握算术平方根的定义是解题的关键.依据算术平方根的定义回答即可.由算术平方根的定义可知:8的算术平方根是,∵=2,∴8的算术平方根是2.故答案为2.考点:算术平方根.17、【解析】分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,先提取公因式2后继续应用完全平方公式分解即可:.18、12.【解析】
根据正n边形的中心角的度数为进行计算即可得到答案.【详解】解:根据正n边形的中心角的度数为,则n=360÷30=12,故这个正多边形的边数为12,故答案为:12.【点睛】本题考查的是正多边形内角和中心角的知识,掌握中心角的计算公式是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、3【解析】
先算负整数指数幂、零指数幂、二次根式的化简、绝对值,再相加即可求解;【详解】解:原式=23=23=【点睛】考查实数的混合运算,分别掌握负整数指数幂、零指数幂、二次根式的化简、绝对值的计算法则是解题的关键.20、(1)y=5x+9000;(2)每天至少获利10800元;(3)每天生产A产品250件,B产品350件获利最大,最大利润为9625元.【解析】试题分析:(1)A种品牌白酒x瓶,则B种品牌白酒(600-x)瓶;利润=A种品牌白酒瓶数×A种品牌白酒一瓶的利润+B种品牌白酒瓶数×B种品牌白酒一瓶的利润,列出函数关系式;
(2)A种品牌白酒x瓶,则B种品牌白酒(600-x)瓶;成本=A种品牌白酒瓶数×A种品牌白酒一瓶的成本+B种品牌白酒瓶数×B种品牌白酒一瓶的成本,列出不等式,求x的值,再代入(1)求利润.(3)列出y与x的关系式,求y的最大值时,x的值.试题解析:(1)y=20x+15(600-x)=5x+9000,∴y关于x的函数关系式为y=5x+9000;(2)根据题意,得50x+35(600-x)≥26400,解得x≥360,∵y=5x+9000,5>0,∴y随x的增大而增大,∴当x=360时,y有最小值为10800,∴每天至少获利10800元;(3),∵,∴当x=250时,y有最大值9625,∴每天生产A产品250件,B产品350件获利最大,最大利润为9625元.21、(1)y=x2﹣x,点D的坐标为(2,﹣);(2)t=2;(3)M点的坐标为(2,0)或(6,0).【解析】
(1)利用待定系数法求抛物线解析式;利用配方法把一般式化为顶点式得到点D的坐标;(2)连接AC,如图①,先计算出AB=4,则判断平行四边形OCBA为菱形,再证明△AOC和△ACB都是等边三角形,接着证明△OCM≌△ACN得到CM=CN,∠OCM=∠ACN,则判断△CMN为等边三角形得到MN=CM,于是△AMN的周长=OA+CM,由于CM⊥OA时,CM的值最小,△AMN的周长最小,从而得到t的值;(3)先利用勾股定理的逆定理证明△OCD为直角三角形,∠COD=90°,设M(t,0),则E(t,t2-t),根据相似三角形的判定方法,当时,△AME∽△COD,即|t-4|:4=|t2-t|:,当时,△AME∽△DOC,即|t-4|:=|t2-t|:4,然后分别解绝对值方程可得到对应的M点的坐标.【详解】解:(1)把A(4,0)和B(6,2)代入y=ax2+bx得,解得,∴抛物线解析式为y=x2-x;∵y=x2-x=-2)2-;∴点D的坐标为(2,-);(2)连接AC,如图①,AB==4,而OA=4,∴平行四边形OCBA为菱形,∴OC=BC=4,∴C(2,2),∴AC==4,∴OC=OA=AC=AB=BC,∴△AOC和△ACB都是等边三角形,∴∠AOC=∠COB=∠OCA=60°,而OC=AC,OM=AN,∴△OCM≌△ACN,∴CM=CN,∠OCM=∠ACN,∵∠OCM+∠ACM=60°,∴∠ACN+∠ACM=60°,∴△CMN为等边三角形,∴MN=CM,∴△AMN的周长=AM+AN+MN=OM+AM+MN=OA+CM=4+CM,当CM⊥OA时,CM的值最小,△AMN的周长最小,此时OM=2,∴t=2;(3)∵C(2,2),D(2,-),∴CD=,∵OD=,OC=4,∴OD2+OC2=CD2,∴△OCD为直角三角形,∠COD=90°,设M(t,0),则E(t,t2-t),∵∠AME=∠COD,∴当时,△AME∽△COD,即|t-4|:4=|t2-t|:,整理得|t2-t|=|t-4|,解方程t2-t=(t-4)得t1=4(舍去),t2=2,此时M点坐标为(2,0);解方程t2-t=-(t-4)得t1=4(舍去),t2=-2(舍去);当时,△AME∽△DOC,即|t-4|:=|t2-t|:4,整理得|t2-t|=|t-4|,解方程t2-t=t-4得t1=4(舍去),t2=6,此时M点坐标为(6,0);解方程t2-t=-(t-4)得t1=4(舍去),t2=-6(舍去);综上所述,M点的坐标为(2,0)或(6,0).【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质、平行四边形的性质和菱形的判定与性质;会利用待定系数法求函数解析式;理解坐标与图形性质;熟练掌握相似三角形的判定方法;会运用分类讨论的思想解决数学问题.22、,-【解析】分析:首先把括号里的式子进行通分,然后把除法运算转化成乘法运算,进行约分化简,最后代值计算.详解:.当时,原式.点睛:本题主要考查分式的混合运算,注意运算顺序,并熟练掌握同分、因式分解、约分等知识点.23、(1)甲、乙两队合作完成这项工程需要36天;(2)甲、乙两队至多要合作7天【解析】
(1)设甲、乙两队合作完成这项工程需要x天,根据条件:甲队先做5天,再由甲、乙合作9天,共完成总工作量的13(2)设甲、乙两队最多合作元天,先求出甲、乙两队合作一天完成工程的多少,再根据完成此项工程的工程款不超过190万元,列出不等式,求解即可得出答案.【详解】(1)设甲、乙两队合作完成这项工程需要x天根据题意得,560解得x=36,经检验x=36是分式方程的解,答:甲、乙两队合作完成这项工程需要36天,(2)1设甲、乙需要合作y天,根据题意得,4+2.5y+2.5×解得y≤7答:甲、乙两队至多要合作7天.【点睛】本题考查了分式方程的应用和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.24、解:(1);(2);(3)n=17.【解析】
(1)、根据给出的式子将各式进行拆开,然后得出答案;(2)、根据给出的式子得出规律,然后根据规律进行计算;(3)、根据题意将式子进行展开,然后列出关于n的一元一次方程,从而得出n的值.【详解】(1)原式=1−+−+−+−+−=1−=.故答案为;(2)原式=1−+−+−+…+−=1−=故答案为;(3)+++…+=(1−+−+−+…+−)=(1−)==解得:n=17.考点:规律题.25、阅读发现:90°;(1)证明见解析;(2)100°【解析】
阅读发现:只要证明,即可证明.拓展应用:欲证明,只要证明≌即可.根据即可计算.【详解】解:如图中,四边形ABCD是正方形,,,≌
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度豪华游艇船员服务合同模板3篇
- 二零二五年度二手车交易税费结算合同4篇
- 个性化2024版离婚起诉书合同样本版B版
- 2025年度金融行业临时工风险管理合同4篇
- 二零二五年度第三方担保合同助力文化产业融资担保服务范本2篇
- 二零二五年度钢结构建筑项目信息化管理合同范本3篇
- 2025年私房旧房买卖合同系列(带附属设施)3篇
- 2025年度码头货物清关代理服务合同范本4篇
- 二零二四书店门面临时代租与图书租赁服务合同3篇
- 2025年度网络安全防护常年培训服务合同4篇
- 雾化吸入疗法合理用药专家共识(2024版)解读
- 寒假作业(试题)2024-2025学年五年级上册数学 人教版(十二)
- 银行信息安全保密培训
- 市政道路工程交通疏解施工方案
- 2024年部编版初中七年级上册历史:部分练习题含答案
- 拆迁评估机构选定方案
- 床旁超声监测胃残余量
- 上海市松江区市级名校2025届数学高一上期末达标检测试题含解析
- 综合实践活动教案三上
- 《新能源汽车电气设备构造与维修》项目三 新能源汽车照明与信号系统检修
- 2024年新课标《义务教育数学课程标准》测试题(附含答案)
评论
0/150
提交评论