版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Dead-timeCompensationofSVPWMBasedonDSPTMS320F2812forPMSMSongXuelei*,WenXuhui,GuoXinhua,andZhaoFengInstituteofElectricalEngineering,ChineseAcademyofSciences,Beijing,P.R.ChinaE-mail:songxl@Abstract—Thedead-timeeffectinathree-phasevoltagesourceinvertercanresultinvoltagelosses,currentwaveformdistortionandtorquepulsation.Inordertoimprovethecurrentwaveformanddecreasethetorquepulsation,thispaperproposesadead-timecompensationmethodofSVPWM.Thismethoddividestheiα-iβplaneintosixsectorsandcompensatesthedead-timeofSVPWMaccordingtothesectornumberofstatorcurrentvectordeterminedbytheα-andβ-axiscomponentsofthestatorcurrentvectorinthetwo-phasestaticreferenceframe.Inaddition,thismethodcanbeimplementedentirelythroughsoftwarewithoutanyextrahardware.FinallyexperimentsbasedonDSPTMS320F2812areestablishedandmade,andtheexperimentresultsindicatethattheproposedmethodiscorrectandfeasible.IndexTerms--dead-timecompensation,SVPWM,PMSM,TMS320F2812I.INTRODUCTIONBecausethepermanentmagnetsynchronousmachine(PMSM)hasalotofadvantagessuchashighpowerdensity,highefficiency,hightorquetoinertiaratio,highreliability,etal[1],therefore,thePMSMdrivingsystemhavebeenwidelyusedinmanyapplicationfields,especiallyinhybridelectricvehicles(HEV)inrecentyears[2]-[6].InthePMSMdrivingsystem,thethree-phasevoltagesourceinverterisusuallyadoptedandtheIGBTandMOSFETarealsousedbecauseoftheirfastswitchingfrequency.Forthethree-phasevoltagesourceinverter,inordertoavoidtheshortcircuitofthedclinkoccurringwhenthetwoswitchdevicesofthesamephaseareturnedonsimultaneously,thedead-timeisusuallyinsertedinthegatedrivingswitchsignals.Duringthedurationofthedead-time,bothofthetwoswitchdeviceofthesamephaseareturnedoff.Theexistingofthedead-timewillleadtoaseriesofdead-timeeffectproblemssuchasvoltagelosses,currentwaveformdistortionandtorquepulsation,especiallyundertheconditionofsmallcurrentorlowspeed.SVPWM(SpaceVectorPulseWidthModulation)isapopularmodulationmethodforthree-phasevoltagesourceinverterinmotordrivingsystem.Inordertoimprovethecurrentwaveformofmotorsanddecreasethetorquepulsationofmotors,severaldead-timecompensationmethodsofSVPWMhavebeenresearchedandusedinthemotordrivingsystem[7]-[11].Mostofthecompensationmethodsarebasedonthetheoryofaveragevoltagedeviation.Inthispaper,anoveldead-timecompensationmethodofSVPWM,whichisalsobasedonthetheoryofaveragevoltagedeviation,isproposed.Thismethoddividestheiα-iβplaneintosixsectorsandcompensatesthedeadtimeofSVPWMaccordingtothestatorcurrentvectorangleφdeterminedbytheα-andβ-axiscomponentsofthestatorcurrentvectorintheα-βreferenceframe.Inaddition,thismethodcanbeimplementedentirelythroughsoftwarewithoutanyextrahardwaredesign.FinallyexperimentsaremadeonthePMSMdrivingplatformbasedonDSPTMS320F2812totestandverifytheproposedcompensationmethod.II.DEAD-TIMECOMPENSATIONMETHODFig.1showsthetopologydiagramofthePMSMdrivingsystemwhoseinvertunitadoptsthethree-phasevoltagesourceinverter.InFig.1,Q1,Q2,Q3,Q4,Q5andQ6aresixIGBTsofthethree-phasevoltagesourceinverter,andD1,D2,D3,D4,D5andD6aretheirreverseparalleldiodesrespectively.Inaddition,thedrivingswitchsignalsg1,g2,g3,g4,g5andg6areprovidedbythecontrolunitofthedrivingsystem.Definethephasecurrentsia,ibandicarepositivewhentheyflowfromtheinvertertoPMSM,andnegativewhentheyflowfromPMSMtotheinverter.ThereareeightswitchcombinationstatesforthesixIGBTsinthethreephasevoltagesourceinverter,andduringthedurationofdead-time,therearecorrespondinglysixcurrentcombinationstatesforthree-phasecurrentsia,ibandicaccordingtotheirpolarity:(1)ia>0,ib<0andic<0;(2)ia>0,ib>0andic<0;(3)ia<0,ib>0andic<0;(4)ia<0,ib>0andic>0;(5)ia<0,ib<0andic>0;(6)ia>0,ib<0andic>0.Itisveryimportantanddifficulttodetectthezerocrosspointorthepolarityofeachphasecurrent.Traditionally,ifthezero-crosspointisdetectdirectlythroughA/DconverterofDSPorMCU,biggermeasurementdeviationwillbeledespeciallyundertheconditionofsmallcurrent,whichwillresultinbiggerdead-timecompensationdeviationandalsoaffecttheresultofdead-timecompensation.Therefore,thispaperadoptsanindirectlymethodtodetectthezero-crosspointofphasecurrent,whichisbasedonthecurrentvectorangleφinthetwo-phasestaticreferenceframe.Forconvenientanalysisandillustration,placethethree-phasecurrentsia,ib,icinthethree-phasestaticreferenceframeandthetwocurrentcomponentsiα,iβofthecurrentvectorinthetwo-phasestaticreferenceframeintothesamefigure,whichisshowninFig.2.Accordingtothepolarityofthree-phasecurrentsia,ib,ic,theiα-iβplaneinthetwo-phasestaticreferenceframecanbedividedintosixsectors:I(1),II(2),III(3),IV(4),V(5)andVI(6).Foreachsectorintheiα-iβplane,thereisacorrespondingdead-timecompensationrule.Inotherwords,oncethesectorwhichthecurrentvectorbelongstoisknown,thedead-timeeffectcanbecompensatedaccordingtothecorrespondingcompensationrule.Therefore,recognizingthesectornumberofthecurrentvectoristhekeyproblem.Inthispaper,thesectornumberisdeterminedbythecurrentvectorangleφwhichcanbecalculatedthroughtheα-andβ-axiscomponentsofthestatorcurrentvector.Equation(1)showsthecalculationmethodofthecurrentvectorφ,andequation(2)showstherelationshipbetweenthesectornumberandthecurrentvectorφ.φ=kπ+arctan(iβ/iα)(k=0,1)Fig.2.CurrentPolarityandCurrentVectorAngleϕTABLEIDEAD-TIMECOMPENSATIONRULESTABLEOFSVPWM(2)Forthree-phasevoltagesourceinverter,theessenceofdead-timecompensationistocompensatingthevoltagedeviation.However,inthedigitalmotordrivingandcontrolsystem,voltageregulationisimplementedthroughpulsewidthmodulation,thatis,throughregulatingthedutycycleofvoltagepulsewhichhassomethingtodowiththepulsewidthTinonePWMperiodTpwm.Therefore,infactitisthepulsewidthTthatiscompensatedinthepracticalapplication.TABLEIshowsthedead-timecompensationrulescorrespondingwiththepolarityofthree-phasecurrentsia,ib,icandthesectornumberofthecurrentvectorintheiα-iβplane.Itcanbeseenthatfordifferentsectorsoftheiα-iβplane,thecompensationvaluesarecorrespondinglydifferent.Inoneword,theproposeddead-timecompensationmethodcanbecarriedoutthroughthefollowingsteps:(1)Calculatethecurrentvectorangleφthroughtheα-andβ-axiscomponentsofthestatorcurrentvectorinthetwo-phasestaticreferenceframeaccordingtoequation(1).(2)Determinethesectornumberthroughthecurrentvectorangleφaccordingtoequation(2).(3)Executethedead-timecompensationalgorithmaccordingtothecompensationrulestableTABLEI.III.EXPERIMENTSInordertotestandverifytheproposeddead-timecompensationmethodofSVPWM,experimentsareestablishedandmade.TheexperimentsystemconsistsofPMSM,three-phasevoltagesourceinverter,controlplatform,dynamometer,heatdissipationsystem,etal.ThetypeofIGBTintheinverterisCM600DY-24AproducedbyMitsubishi.ThecontrolplatformisbasedonDSPTMS320F2812producedbyTexasInstrument.ItisaspecialmotorcontrolDSPwhichhasmanyadvantagesandcanimplementhigh-performancemotorcontrolsuchasFOC(FieldOrientedControl)andDTC(DirectTorqueControl).ThemainparametersofthecontrolobjectPMSMusedinexperimentsarelistedinTABLEII.Fordifferentpulsewidthcompensationvaluesof0.76μs,1.10μs,1.33μsand1.60μs,thedead-timecompensationexperimentsareallmade.Fig.3showstheexperimentwaveformsofthree-phasestatorcurrentsandthesectornumberofstatorcurrentvectorfordifferentpulsewidthcompensationvalues,andFig.4showsthecorrespondingfrequencyspectrums.TABLEIIMAINPARAMETERSOFPMSMUSEDINEXPERIMENTS(a)NoCompensation(b)PulseWidthCompensationValue=0.76μs(c)PulseWidthCompensationValue=1.10μs(d)PulseWidthCompensationValue=1.33μs(e)PulseWidthCompensationValue=1.60μsFig.3.ExperimentWaveformsofThree-phaseStatorCurrentsHere,theCPUfrequencyofDSPissetat150MHz,theswitchingfrequencyofIGBTsinthree-phasevoltageinverterissetat10kHz,thedead-timeissetat3.2μsthroughthehardwareandsoftwareofDSP,themotorcontrolmethodadoptsFOCalgorithm,thedclinkvoltageissetatabout330V,andthephasecurrentiscontrolledatabout10A.(a)NoCompensation(b)PulseWidthCompensationValue=0.76μs(c)PulseWidthCompensationValue=1.10μs(d)PulseWidthCompensationValue=1.33μs(e)PulseWidthCompensationValue=1.60μsFig.4.FrequencySpectrumofStatorCurrent(PhaseA)ItcanbeseenfromFig.3andFig.4that,comparedwithexperimentresultsofnocompensation,throughtheproposeddead-timecompensationalgorithmthethreephasestatorcurrentwaveformsofPMSMareallimprovedeffectivelyandtheharmoniccomponentsofthree-phasestatorcurrentsarealsodecreasedeffectively.Especiallywhenthepulsewidthcompensationvalueissetatabout1.10μs,comparedwithexperimentresultsattheotherpulsewidthcompensationvaluesof0.76μ,1.33μsand1.60μs,thecompensationresultisthebestandtheharmoniccomponentsofthree-phasestatorcurrentsaretheleast.Therefore,theproposeddead-timecompensationmethodiscorrectandfeasible.IV.CONCLUSIONSTheproposeddead-timecompensationmethodcanbeimplementedeasilythroughsoftwarealgorithmwithoutanyextrahardwaredesign.Solongasthecurrentvectorangleφisdeterminedbytheα-andβ-axiscomponentsofstatorcurrentvectorinthetwo-phasestaticreferenceframe,thedead-timecompensationalgorithmcanbecarriedouteffectivelyaccordingtothecorrespondingdead-timecompensationrulestable.FinallyexperimentsareestablishedandmadeonthePMSMdrivingplatformbasedonDSPTMS320F2812andtheresultsindicatethattheproposedmethodcanimprovethecurrentdistortionanddecreasethetorquepulsationeffectively,especiallywhenthepulsewidthcompensationvalueisequaltoabout1.10μs.Therefore,theproposedmethodiscorrectandfeasible.REFERENCES[1]SongChi,ZhengZhang,LongyaXu,“ARobust,EfficiencyOptimizedFlux-WeakeningControlAlgorithmforPMSynchronousMachines”,Proceedingsofthe2007IEEEIndustryApplicationsConference,pp.1308-1314,2007.[2]ZhangQianfan,LiuXiaofei,“PermanentMagneticSynchronousMotorandDrivesAppliedonaMid-sizeHybridElectricCar”,Proceedingsofthe2008IEEEVehiclePowerandPropulsionConference,pp.1-5,2008.[3]Y.Dai,L.Song,S.Cui,“DevelopmentofPMSMDrivesforHybridElectricCarApplications”,IEEETransactionsonMagnetics,Vol.43,No.1,pp.434-437,2007.[4]RahmanM.A.,“IPMMotorDrivesforHybridElectricVehicles”,Proceedingsofthe2007InternationalAegeanconferenceonElectricalMachinesandPowerElectronics,pp.109-115,2007.[5]RahmanM.A.,“HighEfficiencyIPMMotorDrivesforHybridElectricVehicles”,Proceedingsofthe2007CanadianConferenceonElectricalandComputerEngineering,pp.252-255,2007.[6]FuZ.X.,“Real-timePredictionofTorqueAvailabilityofanIPMSynchronousMachineDriveforHybridElectricVehicles”,Proceedingsofthe2005IEEEInternationalConferenceonElectricMachinesandDrives,pp.199-206,2005.[7]WangGao-lin,YuYong,YangRong-feng,XuDian-guo,“Dead-timeCompensationofSpaceVectorPWMInverterforInductionMotor”,ProceedingsoftheCSEE,Vol.28,No.15,pp.79-83,2008.[8]ZeyunChao,ZhixinXu,LiliKong,“ResearchofDeadtimeCompensationinSVPWMModulator”,ProceedingsofICEMS2008,pp.1973-1975,2008.[9]ZhouL.Q.,“Dead-timeCompensationMethodofSVPWMBasedonDSP”,Proceedingsofthe4thIEEEConferenceonIndustrialElectronicsandApplications,pp.2355-2358,2009.[10]QingboHu,HaibingHu,ZhengyuLu,WenxiYao,“ANovelMethodforDead-timeCompensationBasedonSVPWM”,ProceedingsofAPEC2005,Vol.3,pp.1867-1870,2005.[11]N.Urasaki,T.Senjyu,K.Uezato,T.Funabashi,“AnAdaptiveDead-timeCompensationStrategyforVoltageSourceInverterFedMotorDrives”,IEEETransactionsonPowerElectronics,vol.20,No.5,pp.1150-1160,2005.外文资料译文基于TMS320F2812DSP的有死区时间补偿的SVPWM调速永磁同步电动机宋雪蕾*温徐汇,郭新华和赵峰北京电机工程学会,中国科学院,E-mail:songxl@抽象的死区时间的影响可导致逆变器三相电压源电压损失,电流波形畸变和转矩脉动。为了改善目前的波形,并减少转矩脉动,提出了一种SVPWM的死区时间补偿方法。这种方法划分iα–iβ平面为六个扇形区域,进入和补偿的死区时间的SVPWM矢量根据定子柯部门数目这种方法划分iα-iβ平面为6个扇形区域,补偿的SVPWM死区时间,根据部门的α数和组件的定子β-轴由定子电流矢量的决定。此外,这一方法可以通过软件实现完全没有任何额外的硬件数字信号处理器TMS320F2812的基础上最后的实验,建立和作出的,而实验结果表明,该方法是正确和可行的。关键词:指数条款-死区补偿,SVPWM的,永磁同步电机,TMS320F2812引言由于永磁同步电机(PMSM的)有很多优势,例如,高功率密度,高效率,高惯性力矩比,高可靠性等[1],因此,永磁同步电机驱动系统已被广泛应用于许多应用领域,尤其是在最近几年应用在混合动力(HEV)用电动汽车上[2]-[6]。在永磁同步电机驱动系统,三相电压源逆变器通常采用的IGBT和MOSFET也因为它们的开关频率而普遍使用。为了避免短路的同时转向装置的直流环节发生的时候,双方在同一阶段的切换,死区时间通常是在门信号驱动开关的时候。在持续死区时间中,相都相同的两个开关装置处于关闭状态。当时现有的死将导致一系列问题的死区时间的影响,例如,电压损失,电流波形畸变和转矩脉动,特别是在高速条件下的小电流或低。空间矢量脉宽调制(空间矢量脉宽调制)在电机逆变器是一种流行的调制方式为3相电压源驱动系统。为了提高电动机的电流波形,降低电机转矩脉动,几个死区时间补偿的SVPWM方法进行了研究和系统在驾驶汽车[7]-[11].大部分的补偿办法是根据偏差理论的平均电压。在此提出了一种新颖的死区时间补偿的SVPWM方法,这也是基于平均电压的偏差理论。这种方法划分iα-iβ平面成6个部分,并弥补了时间的SVPWM根据定子电流矢量根据定子电流部门角度φ。确定的α-和β-定子轴的α组成部分的电流矢量中-β参照系。另外,该方法通过软件可以实现完全没有任何额外的硬件设计。最后的实验,是基于数字信号处理器TMS320F2812的驾驶平台,测试验证了提出的PMSM和补偿方法。死区补偿方法图1显示了逆变器的拓扑图的永磁同步电机驱动系统的转化装置采用了三相电压。在图1,Q1,Q2,Q3,Q4,Q5和Q6有6逆变器的IGBT的三相电压源,和D1,D2和D3,D4,D5和D6中的反向平行二极管。另外,开关的驱动信号G1,G2,G3,G4,G5和G6是系统提供的驱动控制装置。定义相电流Ia,Ib和Ic从永磁同步电动机变频流向为正,当决定逆变流流向永磁同步电动机为负时。有8个开关的三相电压源逆变器的六个IGBT组合状态,并在死区时间中,有相应的6个当前结合态对应三相电流IA,IB和IC根据自己的极性:(1)ia>0,ib<0andic<0;(2)ia>0,ib>0andic<0;(3)ia<0,ib>0andic<0;(4)ia<0,ib>0andic>0;(5)ia<0,ib<0andic>0;(6)ia>0,ib<0andic>0.图1。拓扑图的永磁同步电机驱动系统零交叉点或每个阶段极性电流是非常重要和难以检测的。照惯例,如果零交叉点检测单片机直接通过数字信号处理器或/D转换器,较大的测量误差将导致特别是在小电流条件下,这将导致更大的死区时间补偿的偏差,也影响了死区时间补偿结果。因此,本文采用一种间接的方法来检测零交叉点,是在两相静止坐标系上基于电流矢量角φ来检测的。为方便分析和说明,定义三相电流ia,ib,ic在三相静止坐标系的两个电流分量iα,iβ在两相静止坐标系电流矢量有相同的数字,这显示在图2。根据三相电流ia,ib,ic的极性,两相静止坐标系iα-iβ可分为6个部分:I(1),II(2),III(3),IV(4),V(5)和VI(6).对于两相静止坐标系iα-iβ每个部分,有相应的死区时间补偿规则。换句话说,一旦该部分的电流矢量属于已知,死区时间可以根据相应的补偿规则得到补偿。因此,认识到当前的矢量扇区数是关键问题。本文,该扇形的数目取决于电流矢量角φ,它可以通过计算α-和β-轴定子组件的电流矢量来得到。方程(1)显示当前向量φ的计算方法,和方程(2)显示了扇形和电流矢量φ之间的数量关系。φ=kπ+arctan(iβ/iα)(k=0,1)图2电流极性和电流矢量角φ表一SVPWM死区时间补偿规则表对于三相电压源逆变器,对死区时间的本质补偿,是补偿电压偏差。然而,在数字电机驱动和控制系统中,电压调节是通过脉冲宽度调制,即通过调节占空比脉冲电压,它是与脉冲宽T在一个脉宽调制的周期Tpwm。因此,事实上它是脉冲宽度T的实际应用中得到补偿。表格一显示死区时间补偿规则相应的三相电流极性ia,ib,ic和扇区数目前的矢量在iα-iβ平面。可以看出,对于iα-iβ坐标系的不同扇区,相应的补偿值是不同的。一句话,建议的死区时间补偿方法可以进行通过以下步骤:在两相静止坐标系根据方程(1)通过α-和β-轴组件计算定子电流矢量的电流矢量角φ。通过电流矢量角φ根据方程(2)确定的部门数目根据表一执行的死区补偿算法的补偿规则。三.实验为了测试和验证所提出的停滞时间补偿的SVPWM方法,实验建立了。该实验系统由永磁同步电动机,三相电压源逆变器,控制平台,功率计,散热系统等组成。IGBT逆变器类型是CM600DY-24A,三菱公司生产。控制平台是基于DSPTMS320F2812的,德州仪器生产。这是一个特殊的DSP控制的电机,具有许多优点,并能实现高性能的电机控制,例如磁场定向控制(磁场定向控制)和DTC(直接转矩控制)。对控制对象永磁同步电动机用于实验的主要参数列于表二。对于不同的脉冲宽度补偿值0.76μs,1.10μs,1.33μs以及1.60μs的死区补偿的实验都完成了。图3显示了三相定子电流实验波形和不同的脉冲宽度补偿值对定子电流矢量部门数的影响,图4显示了相应的频谱。参数单位数值相数-3极对数-5额定功率KW52额定转速Rpm2500额定转矩Nm200永久磁Wb0.104感应系数(d/q)mH0.33/0.50定子绕组的电阻Ω0.024表二永磁同步电动机主要技术参数和实验(a)无补偿(b)脉冲宽度补偿值=0.76μ的脉冲宽度补偿值=1.10μ的脉冲宽度补偿值=1.33μ的脉冲宽度补偿值=1.60μ的图3。实验波形三相定子电流在这里,DSP的CPU的频率为150MHz,IGBT的开关的三相电压型逆变器频率为10kHz,通过硬件和DSP软件死区时间定为3.2μs,FOC电机控制方法采用的算法,链接的直流电压设置为约330V,和相电流控制在10A。无补偿脉冲宽度补偿值=0.76μ的脉冲宽度补偿值=1.10μ的脉冲宽度补偿值=1.33μ的脉冲宽度补偿值=1.60μ的图4。定子电流的频率(相位谱一)从图3和图4可以看出,与不予补偿试验结果相比较,通过拟议的死区时间补偿算法的三相永磁同步电动机定子电流波形都有效地提高,三相定子电流的谐波成分,也有效地降低。尤其是当脉冲宽度补偿价值被设置约1.10μs时,相比于其他补偿值的宽度脉冲的实验结果如0.76μs,1.33μs以及1.60μs,补偿结果是最好的,而且三相定子电流的谐波成分是最少的。因此,建议死区补偿的方法是正确和可行的。四,总结拟议的死区时间补偿方法可以通过软件算法很容易实现无需任何额外硬件设计。只要目前的矢量角φ是由定子电流矢量在两相静止坐标系上的α-和β-轴组件决定,死区补偿算法可以按相应停滞时间有效地进行。最后的实验是建立完善了基于DSPTMS320F2812的驱动永磁同步电动机作平台,其结果表明,该方法可以改善目前的失真,降低扭矩,尤其是当脉冲宽度补偿值等于约1.10μs。因此,该方法是正确和可行的。REFERENCES[1]SongChi,ZhengZhang,LongyaXu,“ARobust,EfficiencyOptimizedFlux-WeakeningControlAlgorithmforPMSynchronousMachines”,Proceedingsofthe2007IEEEIndustryApplicationsConference,pp.1308-1314,2007.[2]
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 文化活动的保安工作探讨计划
- 基于项目的美术教学计划
- 西南医科大学《灾害卫生学》2022-2023学年第一学期期末试卷
- 西南交通大学《数据结构与算法》2022-2023学年第一学期期末试卷
- 西华师范大学《日语二外》2021-2022学年第一学期期末试卷
- 2024年01月11141工程经济与管理期末试题答案
- 西昌学院《规划设计》2023-2024学年第一学期期末试卷
- 西北大学《网页设计》2023-2024学年第一学期期末试卷
- 西北大学《近代物理实验》2022-2023学年第一学期期末试卷
- 探究暖宝宝的发热原理说课稿-2023-2024学年九年级化学人教版下册
- 2024全球体育行业调研报告(第八期)-渐入佳境
- 事业单位考试职业能力倾向测验(综合管理类A类)试题与参考答案(2024年)
- 血液透析室医院感染控制与管理
- 换热站维保合同范例
- 急诊与灾难医学(广西中医药大学)知到智慧树章节答案
- 2024-2025学年上海市普陀区六年级(上)期中语文试卷
- 2024年新款消防灭火器购销协议
- 深圳大学《计算机网络与应用》2022-2023学年期末试卷
- 职业培训师教学技能手册
- 南京信息工程大学《自然语言处理》2023-2024学年期末试卷
- 临沂大学《信息可视化设计》2021-2022学年第一学期期末试卷
评论
0/150
提交评论