版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届苏省南京市联合体中考数学最后冲刺模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1.如图,网格中的每个小正方形的边长是1,点M,N,O均为格点,点N在⊙O上,若过点M作⊙O的一条切线MK,切点为K,则MK=()A.3 B.2 C.5 D.2.如图是由若干个小正方体组成的几何体从上面看到的图形,小正方形中的数字表示该位置小正方体的个数,这个几何体从正面看到的图形是()A. B. C. D.3.下列方程中,没有实数根的是()A.x2﹣2x=0 B.x2﹣2x﹣1=0 C.x2﹣2x+1=0 D.x2﹣2x+2=04.为丰富学生课外活动,某校积极开展社团活动,开设的体育社团有:A:篮球,B:排球,C:足球,D:羽毛球,E:乒乓球.学生可根据自己的爱好选择一项,李老师对八年级同学选择体育社团情况进行调查统计,制成了两幅不完整的统计图(如图),则以下结论不正确的是()A.选科目E的有5人B.选科目A的扇形圆心角是120°C.选科目D的人数占体育社团人数的D.据此估计全校1000名八年级同学,选择科目B的有140人5.纳米是一种长度单位,1纳米=10-9米,已知某种植物花粉的直径约为35000纳米,那么用科学记数法表示该种花粉的直径为()A.米 B.米 C.米 D.米6.关于的不等式的解集如图所示,则的取值是A.0 B. C. D.7.已知二次函数的图象与轴交于点、,且,与轴的正半轴的交点在的下方.下列结论:①;②;③;④.其中正确结论的个数是()个.A.4个 B.3个 C.2个 D.1个8.如图,已知直线,点E,F分别在、上,,如果∠B=40°,那么()A.20° B.40° C.60° D.80°9.的算术平方根是()A.4 B.±4 C.2 D.±210.下列计算正确的是()A. B.(﹣a2)3=a6 C. D.6a2×2a=12a3二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,四边形ABCD中,∠D=∠B=90°,AB=BC,CD=4,AC=8,设Q、R分别是AB、AD上的动点,则△CQR的周长的最小值为_________.12.若x,y为实数,y=,则4y﹣3x的平方根是____.13.若一个多边形的内角和为1080°,则这个多边形的边数为__________.14.如图,数轴上不同三点对应的数分别为,其中,则点表示的数是__________.15.如图,点M、N分别在∠AOB的边OA、OB上,将∠AOB沿直线MN翻折,设点O落在点P处,如果当OM=4,ON=3时,点O、P的距离为4,那么折痕MN的长为______.16.有两名学员小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是_______.三、解答题(共8题,共72分)17.(8分)一不透明的布袋里,装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中有红球2个,蓝球1个,黄球若干个,现从中任意摸出一个球是红球的概率为.(1)求口袋中黄球的个数;(2)甲同学先随机摸出一个小球(不放回),再随机摸出一个小球,请用“树状图法”或“列表法”,求两次摸出都是红球的概率;18.(8分)如图,已知△ABC.(1)请用直尺和圆规作出∠A的平分线AD(不要求写作法,但要保留作图痕迹);(2)在(1)的条件下,若AB=AC,∠B=70°,求∠BAD的度数.19.(8分)在Rt△ABC中,∠ACB=90°,BE平分∠ABC,D是边AB上一点,以BD为直径的⊙O经过点E,且交BC于点F.(1)求证:AC是⊙O的切线;(2)若BF=6,⊙O的半径为5,求CE的长.20.(8分)计算:(﹣2)﹣2﹣sin45°+(﹣1)2018﹣÷221.(8分)我市304国道通辽至霍林郭勒段在修建过程中经过一座山峰,如图所示,其中山脚A、C两地海拔高度约为1000米,山顶B处的海拔高度约为1400米,由B处望山脚A处的俯角为30°,由B处望山脚C处的俯角为45°,若在A、C两地间打通一隧道,求隧道最短为多少米(结果取整数,参考数据≈1.732)22.(10分)如图,在平面直角坐标系中,已知△AOB是等边三角形,点A的坐标是(0,4),点B在一象限,点P(t,0)是x轴上的一个动点,连接AP,并把△AOP绕着点A按逆时针方向旋转,使边AO与AB重合,连接OD,PD,得△OPD。(1)当t=时,求DP的长(2)在点P运动过程中,依照条件所形成的△OPD面积为S①当t>0时,求S与t之间的函数关系式②当t≤0时,要使s=,请直接写出所有符合条件的点P的坐标.23.(12分)抛物线与x轴交于A,B两点(点A在点B的左边),与y轴正半轴交于点C.(1)如图1,若A(-1,0),B(3,0),①求抛物线的解析式;②P为抛物线上一点,连接AC,PC,若∠PCO=3∠ACO,求点P的横坐标;(2)如图2,D为x轴下方抛物线上一点,连DA,DB,若∠BDA+2∠BAD=90°,求点D的纵坐标.24.(2017四川省内江市)小明随机调查了若干市民租用共享单车的骑车时间t(单位:分),将获得的数据分成四组,绘制了如下统计图(A:0<t≤10,B:10<t≤20,C:20<t≤30,D:t>30),根据图中信息,解答下列问题:(1)这项被调查的总人数是多少人?(2)试求表示A组的扇形统计图的圆心角的度数,补全条形统计图;(3)如果小明想从D组的甲、乙、丙、丁四人中随机选择两人了解平时租用共享单车情况,请用列表或画树状图的方法求出恰好选中甲的概率.
参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】
以OM为直径作圆交⊙O于K,利用圆周角定理得到∠MKO=90°.从而得到KM⊥OK,进而利用勾股定理求解.【详解】如图所示:MK=.故选:B.【点睛】考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.2、C【解析】
先根据俯视图判断出几何体的形状,再根据主视图是从正面看画出图形即可.【详解】解:由俯视图可知,几何体共有两排,前面一排从左到右分别是1个和2个小正方体搭成两个长方体,
后面一排分别有2个、3个、1个小正方体搭成三个长方体,
并且这两排右齐,故从正面看到的视图为:.
故选:C.【点睛】本题考查几何体三视图,熟记三视图的概念并判断出物体的排列方式是解题的关键.3、D【解析】
分别计算各方程的根的判别式的值,然后根据判别式的意义判定方程根的情况即可.【详解】A、△=(﹣2)2﹣4×1×0=4>0,方程有两个不相等的实数根,所以A选项错误;B、△=(﹣2)2﹣4×1×(﹣1)=8>0,方程有两个不相等的实数根,所以B选项错误;C、△=(﹣2)2﹣4×1×1=0,方程有两个相等的实数根,所以C选项错误;D、△=(﹣2)2﹣4×1×2=﹣4<0,方程没有实数根,所以D选项正确.故选D.4、B【解析】
A选项先求出调查的学生人数,再求选科目E的人数来判定,B选项先求出A科目人数,再利用×360°判定即可,C选项中由D的人数及总人数即可判定,D选项利用总人数乘以样本中B人数所占比例即可判定.【详解】解:调查的学生人数为:12÷24%=50(人),选科目E的人数为:50×10%=5(人),故A选项正确,选科目A的人数为50﹣(7+12+10+5)=16人,选科目A的扇形圆心角是×360°=115.2°,故B选项错误,选科目D的人数为10,总人数为50人,所以选科目D的人数占体育社团人数的,故C选项正确,估计全校1000名八年级同学,选择科目B的有1000×=140人,故D选项正确;故选B.【点睛】本题主要考查了条形统计图及扇形统计图,解题的关键是读懂统计图,从统计图中找到准确信息.5、C【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】35000纳米=35000×10-9米=3.5×10-5米.故选C.【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.6、D【解析】
首先根据不等式的性质,解出x≤,由数轴可知,x≤-1,所以=-1,解出即可;【详解】解:不等式,解得x<,由数轴可知,所以,解得;故选:.【点睛】本题主要考查了不等式的解法和在数轴上表示不等式的解集,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.7、B【解析】分析:根据已知画出图象,把x=−2代入得:4a−2b+c=0,把x=−1代入得:y=a−b+c>0,根据不等式的两边都乘以a(a<0)得:c>−2a,由4a−2b+c=0得而0<c<2,得到即可求出2a−b+1>0.详解:根据二次函数y=ax2+bx+c的图象与x轴交于点(−2,0)、(x1,0),且1<x1<2,与y轴的正半轴的交点在(0,2)的下方,画出图象为:如图把x=−2代入得:4a−2b+c=0,∴①正确;把x=−1代入得:y=a−b+c>0,如图A点,∴②错误;∵(−2,0)、(x1,0),且1<x1,∴取符合条件1<x1<2的任何一个x1,−2⋅x1<−2,∴由一元二次方程根与系数的关系知∴不等式的两边都乘以a(a<0)得:c>−2a,∴2a+c>0,∴③正确;④由4a−2b+c=0得而0<c<2,∴∴−1<2a−b<0∴2a−b+1>0,∴④正确.所以①③④三项正确.故选B.点睛:属于二次函数综合题,考查二次函数图象与系数的关系,二次函数图象上点的坐标特征,抛物线与轴的交点,属于常考题型.8、C【解析】
根据平行线的性质,可得的度数,再根据以及平行线的性质,即可得出的度数.【详解】∵,,∴,∵,∴,∵,∴,故选C.【点睛】本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同旁内角互补,且内错角相等.9、C【解析】
先求出的值,然后再利用算术平方根定义计算即可得到结果.【详解】=4,4的算术平方根是2,所以的算术平方根是2,故选C.【点睛】本题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.10、D【解析】
根据平方根的运算法则和幂的运算法则进行计算,选出正确答案.【详解】,A选项错误;(﹣a2)3=-a6,B错误;,C错误;.6a2×2a=12a3,D正确;故选:D.【点睛】本题考查学生对平方根及幂运算的能力的考查,熟练掌握平方根运算和幂运算法则是解答本题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】
作C关于AB的对称点G,关于AD的对称点F,可得三角形CQR的周长=CQ+QR+CR=GQ+QR+RF≥GF.根据圆周角定理可得∠CDB=∠CAB=45°,∠CBD=∠CAD=30°,由于GF=2BD,在三角形CBD中,作CH⊥BD于H,可求BD的长,从而求出△CQR的周长的最小值.【详解】解:作C关于AB的对称点G,关于AD的对称点F,则三角形CQR的周长=CQ+QR+CR=GQ+QR+RF=GF,在Rt△ADC中,∵sin∠DAC=,∴∠DAC=30°,∵BA=BC,∠ABC=90°,∴∠BAC=∠BCA=45°,∵∠ADC=∠ABC=90°,∴A,B,C,D四点共圆,∴∠CDB=∠CAB=45°,∠CBD=∠CAD=30°在三角形CBD中,作CH⊥BD于H,BD=DH+BH=4×cos45°+×cos30°=,∵CD=DF,CB=BG,∴GF=2BD=,△CQR的周长的最小值为.【点睛】本题考查了轴对称问题,关键是根据轴对称的性质和两点之间线段最短解答.12、±【解析】∵与同时成立,∴故只有x2﹣4=0,即x=±2,又∵x﹣2≠0,∴x=﹣2,y==﹣,4y﹣3x=﹣1﹣(﹣6)=5,∴4y﹣3x的平方根是±.故答案:±.13、1【解析】
根据多边形内角和定理:(n﹣2)•110(n≥3)可得方程110(x﹣2)=1010,再解方程即可.【详解】解:设多边形边数有x条,由题意得:110(x﹣2)=1010,解得:x=1,故答案为:1.【点睛】此题主要考查了多边形内角和定理,关键是熟练掌握计算公式:(n﹣2)•110(n≥3).14、1【解析】
根据两点间的距离公式可求B点坐标,再根据绝对值的性质即可求解.【详解】∵数轴上不同三点A、B、C对应的数分别为a、b、c,a=-4,AB=3,∴b=3+(-4)=-1,∵|b|=|c|,∴c=1.故答案为1.【点睛】考查了实数与数轴,绝对值,关键是根据两点间的距离公式求得B点坐标.15、【解析】
由折叠的性质可得MN⊥OP,EO=EP=2,由勾股定理可求ME,NE的长,即可求MN的长.【详解】设MN与OP交于点E,
∵点O、P的距离为4,
∴OP=4
∵折叠
∴MN⊥OP,EO=EP=2,
在Rt△OME中,ME=在Rt△ONE中,NE=∴MN=ME-NE=2-故答案为2-【点睛】本题考查了翻折变换,勾股定理,利用勾股定理求线段的长度是本题的关键.16、小林【解析】
观察图形可知,小林的成绩波动比较大,故小林是新手.
故答案是:小林.三、解答题(共8题,共72分)17、(1)1;(2)【解析】
(1)设口袋中黄球的个数为x个,根据从中任意摸出一个球是红球的概率为和概率公式列出方程,解方程即可求得答案;(2)根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出都是红球的情况,再利用概率公式即可求得答案;【详解】解:(1)设口袋中黄球的个数为个,根据题意得:解得:=1经检验:=1是原分式方程的解∴口袋中黄球的个数为1个(2)画树状图得:∵共有12种等可能的结果,两次摸出都是红球的有2种情况∴两次摸出都是红球的概率为:.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.18、(1)见解析;(2)20°;【解析】
(1)尺规作一个角的平分线是基本尺规作图,根据作图步骤即可画图;(2)运用等腰三角形的性质再根据角平分线的定义计算出∠BAD的度数即可.【详解】(1)如图,AD为所求;(2)∵AB=AC,AD平分∠BAC,∴AD⊥BC,∴∠BDA=90°,∴∠BAD=90°﹣∠B=90°﹣70°=20°.【点睛】考查角平分线的作法以及等腰三角形的性质,掌握角平分线的作法是解题的关键.19、(1)证明见解析;(2)CE=1.【解析】
(1)根据等角对等边得∠OBE=∠OEB,由角平分线的定义可得∠OBE=∠EBC,从而可得∠OEB=∠EBC,根据内错角相等,两直线平行可得OE∥BC,根据两直线平行,同位角相等可得∠OEA=90°,从而可证AC是⊙O的切线.
(2)根据垂径定理可求BH=BF=3,根据三个角是直角的四边形是矩形,可得四边形OHCE是矩形,由矩形的对边相等可得CE=OH,在Rt△OBH中,利用勾股定理可求出OH的长,从而求出CE的长.【详解】(1)证明:如图,连接OE,
∵OB=OE,
∴∠OBE=∠OEB,
∵BE平分∠ABC.
∴∠OBE=∠EBC,
∴∠OEB=∠EBC,
∴OE∥BC,
∵∠ACB=90°,
∴∠OEA=∠ACB=90°,
∴AC是⊙O的切线.
(2)解:过O作OH⊥BF,
∴BH=BF=3,四边形OHCE是矩形,
∴CE=OH,
在Rt△OBH中,BH=3,OB=5,
∴OH==1,
∴CE=1.【点睛】本题考查切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线和垂径定理以及勾股定理的运用,具有一定的综合性.20、【解析】
按照实数的运算顺序进行运算即可.【详解】解:原式【点睛】本题考查实数的运算,主要考查零次幂,负整数指数幂,特殊角的三角函数值以及立方根,熟练掌握各个知识点是解题的关键.21、隧道最短为1093米.【解析】【分析】作BD⊥AC于D,利用直角三角形的性质和三角函数解答即可.【详解】如图,作BD⊥AC于D,由题意可得:BD=1400﹣1000=400(米),∠BAC=30°,∠BCA=45°,在Rt△ABD中,∵tan30°=,即,∴AD=400(米),在Rt△BCD中,∵tan45°=,即,∴CD=400(米),∴AC=AD+CD=400+400≈1092.8≈1093(米),答:隧道最短为1093米.【点睛】本题考查了解直角三角形的应用,正确添加辅助线构建直角三角形是解题的关键.22、(1)DP=;(2)①;②.【解析】
(1)先判断出△ADP是等边三角形,进而得出DP=AP,即可得出结论;
(2)①先求出GH=2,进而求出DG,再得出DH,即可得出结论;
②分两种情况,利用三角形的面积建立方程求解即可得出结论.【详解】解:(1)∵A(0,4),
∴OA=4,
∵P(t,0),
∴OP=t,
∵△ABD是由△AOP旋转得到,
∴△ABD≌△AOP,
∴AP=AD,∠DAB=∠PAO,
∴∠DAP=∠BAO=60°,
∴△ADP是等边三角形,
∴DP=AP,
∵,
∴,
∴;(2)①当t>0时,如图1,BD=OP=t,
过点B,D分别作x轴的垂线,垂足于F,H,过点B作x轴的平行线,分别交y轴于点E,交DH于点G,
∵△OAB为等边三角形,BE⊥y轴,
∴∠ABP=30°,AP=OP=2,
∵∠ABD=90°,
∴∠DBG=60°,
∴DG=BD•sin60°=,
∵GH=OE=2,
∴,
∴;②当t≤0时,分两种情况:
∵点D在x轴上时,如图2在Rt△ABD中,,
(1)当时,如图3,BD=OP=-t,,∴,
∴,
∴或,
∴或,
(2)当时,如图4,BD=OP=-t,,
∴,
∴∴或(舍)∴.【点睛】此题是几何变换综合题,主要考查了全等三角形的判定和性质,旋转的性质,三角形的面积公式以及解直角三角形,正确作出辅助线是解决本题的关键.23、(1)①y=-x2+2x+3②(2)-1【解析】分析:(1)①把A、B的坐标代入解析式,解方程组即可得到结论;②延长CP交x轴于点E,在x轴上取点D使CD=CA,作EN⊥CD交CD的延长线于N.由CD=CA,OC⊥AD,得到∠DCO=∠ACO.由∠PCO=3∠ACO,得到∠ACD=∠ECD,从而有tan∠ACD=tan∠ECD,,即可得出AI、CI的长,进而得到.设EN=3x,则CN=4x,由tan∠CDO=tan∠EDN,得到,故设DN=x,则CD=CN-DN=3x=,解方程即可得出
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 行政法试题题库
- 工程索赔报告书实例
- 妊娠期高血糖孕期管理新进展
- 应用文满分策略3
- 专题06有理数的加减(3大考点9种题型)(原卷版)
- 人教部编版八年级语文上册《单元复习》公开示范课教学课件
- 降低患者外出检查漏检率-品管圈课件
- 五年级上册生命安全教育全册教案
- 六年级安全与环境教育教案
- JimWaters先生与沃特世公司的发展历程
- 【初中数学 】第五章 相交线与平行线 章节练习题 2023-2024学年人教版数学七年级下册
- 工业产品质量安全风险监测实施规范
- 482023年广西职业院校技能大赛中职组《职业英语技能》赛项职场应用环节样题
- 高中化学教学学生高阶思维能力培养路径分析
- 原始记录书写培训课件
- 《数学家高斯》课件
- 2023年中国石化安庆石化公司校园招聘150人历年高频难易度、易错点模拟试题(共500题)附带答案详解
- 《小学生的自我保护》课件
- 项目质量管理与保障措施
- 2023年10月自考试题06089劳动关系与劳动法
- 岗位风险排查管理制度
评论
0/150
提交评论