新疆生产建设兵团第二师二十五团中学2024届中考数学最后冲刺浓缩精华卷含解析_第1页
新疆生产建设兵团第二师二十五团中学2024届中考数学最后冲刺浓缩精华卷含解析_第2页
新疆生产建设兵团第二师二十五团中学2024届中考数学最后冲刺浓缩精华卷含解析_第3页
新疆生产建设兵团第二师二十五团中学2024届中考数学最后冲刺浓缩精华卷含解析_第4页
新疆生产建设兵团第二师二十五团中学2024届中考数学最后冲刺浓缩精华卷含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

新疆生产建设兵团第二师二十五团中学2024届中考数学最后冲刺浓缩精华卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,A,B是半径为1的⊙O上两点,且OA⊥OB.点P从A出发,在⊙O上以每秒一个单位长度的速度匀速运动,回到点A运动结束.设运动时间为x,弦BP的长度为y,那么下面图象中可能表示y与x的函数关系的是A.① B.④ C.②或④ D.①或③2.一元二次方程的根的情况是()A.有一个实数根 B.有两个相等的实数根C.有两个不相等的实数根 D.没有实数根3.在一次中学生田径运动会上,参加跳远的名运动员的成绩如下表所示:成绩(米)人数则这名运动员成绩的中位数、众数分别是()A. B. C., D.4.如图,在矩形ABCD中,AB=5,BC=7,点E为BC上一动点,把△ABE沿AE折叠,当点B的对应点B′落在∠ADC的角平分线上时,则点B′到BC的距离为()A.1或2 B.2或3 C.3或4 D.4或55.如图,将含60°角的直角三角板ABC绕顶点A顺时针旋转45°度后得到△AB′C′,点B经过的路径为弧BB′,若∠BAC=60°,AC=1,则图中阴影部分的面积是()A. B. C. D.π6.下列天气预报中的图标,其中既是轴对称图形又是中心对称图形的是()A. B. C. D.7.下列图形中,既是中心对称图形,又是轴对称图形的是()A. B. C. D.8.下列图标中,是中心对称图形的是()A. B.C. D.9.(﹣1)0+|﹣1|=()A.2B.1C.0D.﹣110.下列方程中,没有实数根的是()A. B.C. D.二、填空题(共7小题,每小题3分,满分21分)11.如图,在四边形ABCD中,点E、F分别是边AB、AD的中点,BC=15,CD=9,EF=6,∠AFE=50°,则∠ADC的度数为_____.12.点A(x1,y1)、B(x1,y1)在二次函数y=x1﹣4x﹣1的图象上,若当1<x1<1,3<x1<4时,则y1与y1的大小关系是y1_____y1.(用“>”、“<”、“=”填空)13.如图,在△ABC中,点D、E分别在AB、AC上,且DE∥BC,已知AD=2,DB=4,DE=1,则BC=_____.14.如图,菱形ABCD的面积为120cm2,正方形AECF的面积为50cm2,则菱形的边长____cm.15.抛物线的顶点坐标是________.16.若点M(1,m)和点N(4,n)在直线y=﹣x+b上,则m___n(填>、<或=)17.若一个多边形的内角和是900º,则这个多边形是边形.三、解答题(共7小题,满分69分)18.(10分)豆豆妈妈用小米运动手环记录每天的运动情况,下面是她6天的数据记录(不完整):(1)4月5日,4月6日,豆豆妈妈没来得及作记录,只有手机图片,请你根据图片数据,帮她补全表格.(2)豆豆利用自己学习的统计知识,把妈妈步行距离与燃烧脂肪情况用如下统计图表示出来,请你根据图中提供的信息写出结论:.(写一条即可)(3)豆豆还帮妈妈分析出步行距离和卡路里消耗数近似成正比例关系,豆豆妈妈想使自己的卡路里消耗数达到250千卡,预估她一天步行距离为公里.(直接写出结果,精确到个位)19.(5分)如图,在平面直角坐标系中,直线y1=2x+b与坐标轴交于A、B两点,与双曲线(x>0)交于点C,过点C作CD⊥x轴,垂足为D,且OA=AD,点B的坐标为(0,﹣2).(1)求直线y1=2x+b及双曲线(x>0)的表达式;(2)当x>0时,直接写出不等式的解集;(3)直线x=3交直线y1=2x+b于点E,交双曲线(x>0)于点F,求△CEF的面积.20.(8分)如图1,在直角梯形ABCD中,动点P从B点出发,沿B→C→D→A匀速运动,设点P运动的路程为x,△ABP的面积为y,图象如图2所示.(1)在这个变化中,自变量、因变量分别是、;(2)当点P运动的路程x=4时,△ABP的面积为y=;(3)求AB的长和梯形ABCD的面积.21.(10分)如图,某人在山坡坡脚A处测得电视塔尖点C的仰角为60°,沿山坡向上走到P处再测得点C的仰角为45°,已知OA=100米,山坡坡度(竖直高度与水平宽度的比)i=1:2,且O、A、B在同一条直线上.求电视塔OC的高度以及此人所在位置点P的铅直高度.(测倾器高度忽略不计,结果保留根号形式)22.(10分)在△ABC中,AB=AC,∠BAC=α,点P是△ABC内一点,且∠PAC+∠PCA=,连接PB,试探究PA、PB、PC满足的等量关系.(1)当α=60°时,将△ABP绕点A逆时针旋转60°得到△ACP′,连接PP′,如图1所示.由△ABP≌△ACP′可以证得△APP′是等边三角形,再由∠PAC+∠PCA=30°可得∠APC的大小为度,进而得到△CPP′是直角三角形,这样可以得到PA、PB、PC满足的等量关系为;(2)如图2,当α=120°时,参考(1)中的方法,探究PA、PB、PC满足的等量关系,并给出证明;(3)PA、PB、PC满足的等量关系为.23.(12分)如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=1.求抛物线的函数表达式.当t为何值时,矩形ABCD的周长有最大值?最大值是多少?保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.24.(14分)已知关于x的一元二次方程x2+2(m﹣1)x+m2﹣3=0有两个不相等的实数根.(1)求m的取值范围;(2)若m为非负整数,且该方程的根都是无理数,求m的值.

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】

分两种情形讨论当点P顺时针旋转时,图象是③,当点P逆时针旋转时,图象是①,由此即可解决问题.【详解】解:当点P顺时针旋转时,图象是③,当点P逆时针旋转时,图象是①.故选D.2、D【解析】试题分析:△=22-4×4=-12<0,故没有实数根;故选D.考点:根的判别式.3、D【解析】

根据中位数、众数的定义即可解决问题.【详解】解:这些运动员成绩的中位数、众数分别是4.70,4.1.故选:D.【点睛】本题考查中位数、众数的定义,解题的关键是记住中位数、众数的定义,属于中考基础题.4、A【解析】

连接B′D,过点B′作B′M⊥AD于M.设DM=B′M=x,则AM=7-x,根据等腰直角三角形的性质和折叠的性质得到:(7-x)2=25-x2,通过解方程求得x的值,易得点B′到BC的距离.【详解】解:如图,连接B′D,过点B′作B′M⊥AD于M,∵点B的对应点B′落在∠ADC的角平分线上,∴设DM=B′M=x,则AM=7﹣x,又由折叠的性质知AB=AB′=5,∴在直角△AMB′中,由勾股定理得到:,即,解得x=3或x=4,则点B′到BC的距离为2或1.故选A.【点睛】本题考查的是翻折变换的性质,掌握翻折变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.5、A【解析】试题解析:如图,∵在Rt△ABC中,∠ACB=90°,∠BAC=60°,AC=1,∴BC=ACtan60°=1×=,AB=2∴S△ABC=AC•BC=.根据旋转的性质知△ABC≌△AB′C′,则S△ABC=S△AB′C′,AB=AB′.∴S阴影=S扇形ABB′+S△AB′C′-S△ABC==.故选A.考点:1.扇形面积的计算;2.旋转的性质.6、A【解析】

根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是轴对称图形,也是中心对称图形,符合题意;B、是轴对称图形,不是中心对称图形,不合题意;C、不是轴对称图形,也不是中心对称图形,不合题意;D、不是轴对称图形,不是中心对称图形,不合题意.故选:A.【点睛】此题主要考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.7、C【解析】

根据中心对称图形和轴对称图形对各选项分析判断即可得解.【详解】A、不是轴对称图形,是中心对称图形,故本选项错误;B、不是中心对称图形,是轴对称图形,故本选项错误;C、既是中心对称图形,又是轴对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误.故选C.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.8、B【解析】

根据中心对称图形的概念对各选项分析判断即可得解.【详解】解:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.故选B.【点睛】本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.9、A【解析】

根据绝对值和数的0次幂的概念作答即可.【详解】原式=1+1=2故答案为:A.【点睛】本题考查的知识点是绝对值和数的0次幂,解题关键是熟记数的0次幂为1.10、B【解析】

分别计算四个方程的判别式的值,然后根据判别式的意义确定正确选项.【详解】解:A、△=(-2)2-4×(-3)=16>0,方程有两个不相等的两个实数根,所以A选项错误;

B、△=(-2)2-4×3=-8<0,方程没有实数根,所以B选项正确;

C、△=(-2)2-4×1=0,方程有两个相等的两个实数根,所以C选项错误;

D、△=(-2)2-4×(-1)=8>0,方程有两个不相等的两个实数根,所以D选项错误.

故选:B.【点睛】本题考查根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0根时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.二、填空题(共7小题,每小题3分,满分21分)11、140°【解析】

如图,连接BD,∵点E、F分别是边AB、AD的中点,∴EF是△ABD的中位线,∴EF∥BD,BD=2EF=12,∴∠ADB=∠AFE=50°,∵BC=15,CD=9,BD=12,∴BC2=225,CD2=81,BD2=144,∴CD2+BD2=BC2,∴∠BDC=90°,∴∠ADC=∠ADB+∠BDC=50°+90°=140°.故答案为:140°.12、<【解析】

先根据二次函数的解析式判断出抛物线的开口方向及对称轴,根据图象上的点的横坐标距离对称轴的远近来判断纵坐标的大小.【详解】由二次函数y=x1-4x-1=(x-1)1-5可知,其图象开口向上,且对称轴为x=1,

∵1<x1<1,3<x1<4,

∴A点横坐标离对称轴的距离小于B点横坐标离对称轴的距离,

∴y1<y1.

故答案为<.13、1【解析】

先由DE∥BC,可证得△ADE∽△ABC,进而可根据相似三角形得到的比例线段求得BC的长.【详解】解:∵DE∥BC,∴△ADE∽△ABC,∴DE:BC=AD:AB,∵AD=2,DB=4,∴AB=AD+BD=6,∴1:BC=2:6,∴BC=1,故答案为:1.【点睛】考查了相似三角形的性质和判定,关键是求出相似后得出比例式,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.14、13【解析】试题解析:因为正方形AECF的面积为50cm2,所以因为菱形ABCD的面积为120cm2,所以所以菱形的边长故答案为13.15、(0,-1)【解析】∵a=2,b=0,c=-1,∴-=0,,∴抛物线的顶点坐标是(0,-1),故答案为(0,-1).16、>【解析】

根据一次函数的性质,k<0时,y随x的增大而减小.【详解】因为k=﹣<0,所以函数值y随x的增大而减小,因为1<4,所以,m>n.故答案为:>【点睛】本题考核知识点:一次函数.解题关键点:熟记一次函数的性质.17、七【解析】

根据多边形的内角和公式,列式求解即可.【详解】设这个多边形是边形,根据题意得,,解得.故答案为.【点睛】本题主要考查了多边形的内角和公式,熟记公式是解题的关键.三、解答题(共7小题,满分69分)18、(1)见解析;(2)步行距离越大,燃烧脂肪越多;(3)1.【解析】

(1)依据手机图片的中的数据,即可补全表格;(2)依据步行距离与燃烧脂肪情况,即可得出步行距离越大,燃烧脂肪越多;(3)步行距离和卡路里消耗数近似成正比例关系,即可预估她一天步行距离.【详解】解:(1)由图可得,4月5日的步行数为7689,步行距离为5.0公里,卡路里消耗为142千卡,燃烧脂肪18克;4月6日的步行数为15638,步行距离为1.0公里,卡路里消耗为234千卡,燃烧脂肪30克;(2)由图可得,步行距离越大,燃烧脂肪越多;故答案为:步行距离越大,燃烧脂肪越多;(3)由图可得,步行时每公里约消耗卡路里25千卡,故豆豆妈妈想使自己的卡路里消耗数达到250千卡,预估她一天步行距离为1公里.故答案为:1.【点睛】本题考查的是条形统计图和折线统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.19、(1)直线解析式为y1=2x﹣2,双曲线的表达式为y2=(x>0);(2)0<x<2;(3)【解析】

(1)将点B的代入直线y1=2x+b,可得b,则可以求得直线解析式;令y=0可得A点坐标为(1,0),又因为OA=AD,则D点坐标为(2,0),把x=2代入直线解析式,可得y=2,从而得到点C的坐标为(2,2),在把(2,2)代入双曲线y2=,可得k=4,则双曲线的表达式为y2=(x>0).(2)由x的取值范围,结合图像可求得答案.(3)把x=3代入y2函数,可得y=;把x=3代入y1函数,可得y=4,从而得到EF,由三角形的面积公式可得S△CEF=.【详解】解:(1)将点B的坐标(0,﹣2)代入直线y1=2x+b,可得﹣2=b,∴直线解析式为y1=2x﹣2,令y=0,则x=1,∴A(1,0),∵OA=AD,∴D(2,0),把x=2代入y1=2x﹣2,可得y=2,∴点C的坐标为(2,2),把(2,2)代入双曲线y2=,可得k=2×2=4,∴双曲线的表达式为y2=(x>0);(2)当x>0时,不等式>2x+b的解集为0<x<2;(3)把x=3代入y2=,可得y=;把x=3代入y1=2x﹣2,可得y=4,∴EF=4﹣=,∴S△CEF=××(3﹣2)=,∴△CEF的面积为.【点睛】本题考察了一次函数和双曲线例函数的综合;熟练掌握由点求解析式是解题的关键;能够结合图形及三角形面积公式是解题的关键.20、(1)x,y;(2)2;(3)AB=8,梯形ABCD的面积=1.【解析】

(1)依据点P运动的路程为x,△ABP的面积为y,即可得到自变量和因变量;(2)依据函数图象,即可得到点P运动的路程x=4时,△ABP的面积;(3)根据图象得出BC的长,以及此时三角形ABP面积,利用三角形面积公式求出AB的长即可;由函数图象得出DC的长,利用梯形面积公式求出梯形ABCD面积即可.【详解】(1)∵点P运动的路程为x,△ABP的面积为y,∴自变量为x,因变量为y.故答案为x,y;(2)由图可得:当点P运动的路程x=4时,△ABP的面积为y=2.故答案为2;(3)根据图象得:BC=4,此时△ABP为2,∴AB•BC=2,即×AB×4=2,解得:AB=8;由图象得:DC=9﹣4=5,则S梯形ABCD=×BC×(DC+AB)=×4×(5+8)=1.【点睛】本题考查了动点问题的函数图象,弄清函数图象上的信息是解答本题的关键.21、电视塔高为米,点的铅直高度为(米).【解析】

过点P作PF⊥OC,垂足为F,在Rt△OAC中利用三角函数求出OC=100,根据山坡坡度=1:2表示出PB=x,AB=2x,在Rt△PCF中利用三角函数即可求解.【详解】过点P作PF⊥OC,垂足为F.在Rt△OAC中,由∠OAC=60°,OA=100,得OC=OA•tan∠OAC=100(米),过点P作PB⊥OA,垂足为B.由i=1:2,设PB=x,则AB=2x.∴PF=OB=100+2x,CF=100﹣x.在Rt△PCF中,由∠CPF=45°,∴PF=CF,即100+2x=100﹣x,∴x=,即PB=米.【点睛】本题考查了特殊的直角三角形,三角函数的实际应用,中等难度,作出辅助线构造直角三角形并熟练应用三角函数是解题关键.22、(1)150,(1)证明见解析(3)【解析】

(1)根据旋转变换的性质得到△PAP′为等边三角形,得到∠P′PC=90°,根据勾股定理解答即可;(1)如图1,作将△ABP绕点A逆时针旋转110°得到△ACP′,连接PP′,作AD⊥PP′于D,根据余弦的定义得到PP′=PA,根据勾股定理解答即可;(3)与(1)类似,根据旋转变换的性质、勾股定理和余弦、正弦的关系计算即可.试题解析:【详解】解:(1)∵△ABP≌△ACP′,∴AP=AP′,由旋转变换的性质可知,∠PAP′=60°,P′C=PB,∴△PAP′为等边三角形,∴∠APP′=60°,∵∠PAC+∠PCA=×60°=30°,∴∠APC=150°,∴∠P′PC=90°,∴PP′1+PC1=P′C1,∴PA1+PC1=PB1,故答案为150,PA1+PC1=PB1;(1)如图,作°,使,连接,.过点A作AD⊥于D点.∵°,即,∴.∵AB=AC,,∴.∴,°.∵AD⊥,∴°.∴在Rt中,.∴.∵°,∴°.∴°.∴在Rt中,.∴;(3)如图1,与(1)的方法类似,作将△ABP绕点A逆时针旋转α得到△ACP′,连接PP′,作AD⊥PP′于D,由旋转变换的性质可知,∠PAP′=α,P′C=PB,∴∠APP′=90°-,∵∠PAC+∠PCA=,∴∠APC=180°-,∴∠P′PC=(180°-)-(90°-)=90°,∴PP′1+PC1=P′C1,∵∠APP′=90°-,∴PD=PA•cos(90°-)=PA•sin,∴PP′=1PA•sin,∴4PA1sin1+PC1=PB1,故答案为4PA1sin1+PC1=PB1.【点睛】本题考查的是旋转变换的性质、等边三角形的性质、勾股定理的应用,掌握等边三角形的性质、旋转变换的性质、灵活运用类比思想是解题的关键.23、(1);(2)当t=1时,矩形ABCD的周长有最大值,最大值为;(3)抛物线向右平移的距离是1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论