版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省宿迁2024届中考考前最后一卷数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.一个由圆柱和圆锥组成的几何体如图水平放置,其主(正)视图为()A. B. C. D.2.如图1,等边△ABC的边长为3,分别以顶点B、A、C为圆心,BA长为半径作弧AC、弧CB、弧BA,我们把这三条弧所组成的图形称作莱洛三角形,显然莱洛三角形仍然是轴对称图形.设点I为对称轴的交点,如图2,将这个图形的顶点A与等边△DEF的顶点D重合,且AB⊥DE,DE=2π,将它沿等边△DEF的边作无滑动的滚动,当它第一次回到起始位置时,这个图形在运动中扫过区域面积是()A.18π B.27π C.π D.45π3.在“大家跳起来”的乡村学校舞蹈比赛中,某校10名学生参赛成绩统计如图所示.对于这10名学生的参赛成绩,下列说法中错误的是()A.众数是90 B.中位数是90 C.平均数是90 D.极差是154.一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别标有数字1﹣6)朝上一面的数字,任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于()A. B. C. D.5.如图是一个由5个相同的正方体组成的立体图形,它的三视图是()A. B.C. D.6.某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为()A.144(1﹣x)2=100 B.100(1﹣x)2=144 C.144(1+x)2=100 D.100(1+x)2=1447.如图是棋盘的一部分,建立适当的平面直角坐标系,已知棋子“车”的坐标为(-2,1),棋子“马”的坐标为(3,-1),则棋子“炮”的坐标为()A.(1,1) B.(2,1) C.(2,2) D.(3,1)8.计算(x-2)(x+5)的结果是A.x2+3x+7 B.x2+3x+10 C.x2+3x-10 D.x2-3x-109.下列计算正确的是()A.(a+2)(a﹣2)=a2﹣2 B.(a+1)(a﹣2)=a2+a﹣2C.(a+b)2=a2+b2 D.(a﹣b)2=a2﹣2ab+b210.=()A.±4 B.4 C.±2 D.211.如图,AB∥CD,点E在线段BC上,CD=CE,若∠ABC=30°,则∠D为()A.85° B.75° C.60° D.30°12.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1,图2所示,图中各行从左到右列出的算筹数分别表示未知数x,y的系数与相应的常数项.把图1表示的算筹图用我们现在所熟悉的方程组形式表述出来,就是.类似地,图2所示的算筹图我们可以表述为()A. B. C. D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在△ABC中,点D、E分别在AB、AC上,且DE∥BC,已知AD=2,DB=4,DE=1,则BC=_____.14.抛物线y=﹣x2+bx+c的部分图象如图所示,则关于x的一元二次方程﹣x2+bx+c=0的解为_____.15.如图,O是坐标原点,菱形OABC的顶点A的坐标为(﹣3,4),顶点C在x轴的负半轴上,函数y=(x<0)的图象经过顶点B,则k的值为_____.16.如图,已知反比例函数y=(k为常数,k≠0)的图象经过点A,过A点作AB⊥x轴,垂足为B,若△AOB的面积为1,则k=________________.17.已知△ABC中,AB=6,AC=BC=5,将△ABC折叠,使点A落在BC边上的点D处,折痕为EF(点E.F分别在边AB、AC上).当以B.E.D为顶点的三角形与△DEF相似时,BE的长为_____.18.已知点,在二次函数的图象上,若,则__________.(填“”“”“”)三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件元,出厂价为每件元,每月销售量(件)与销售单价(元)之间的关系近似满足一次函数:.李明在开始创业的第一个月将销售单价定为元,那么政府这个月为他承担的总差价为多少元?设李明获得的利润为(元),当销售单价定为多少元时,每月可获得最大利润?物价部门规定,这种节能灯的销售单价不得高于元.如果李明想要每月获得的利润不低于元,那么政府为他承担的总差价最少为多少元?20.(6分)现种植A、B、C三种树苗一共480棵,安排80名工人一天正好完成,已知每名工人只植一种树苗,且每名工人每天可植A种树苗8棵;或植B种树苗6棵,或植C种树苗5棵.经过统计,在整个过程中,每棵树苗的种植成本如图所示.设种植A种树苗的工人为x名,种植B种树苗的工人为y名.求y与x之间的函数关系式;设种植的总成本为w元,①求w与x之间的函数关系式;②若种植的总成本为5600元,从植树工人中随机采访一名工人,求采访到种植C种树苗工人的概率.21.(6分)在△ABC中,AB=AC,∠BAC=α,点P是△ABC内一点,且∠PAC+∠PCA=,连接PB,试探究PA、PB、PC满足的等量关系.(1)当α=60°时,将△ABP绕点A逆时针旋转60°得到△ACP′,连接PP′,如图1所示.由△ABP≌△ACP′可以证得△APP′是等边三角形,再由∠PAC+∠PCA=30°可得∠APC的大小为度,进而得到△CPP′是直角三角形,这样可以得到PA、PB、PC满足的等量关系为;(2)如图2,当α=120°时,参考(1)中的方法,探究PA、PB、PC满足的等量关系,并给出证明;(3)PA、PB、PC满足的等量关系为.22.(8分)如图,已知⊙O经过△ABC的顶点A、B,交边BC于点D,点A恰为的中点,且BD=8,AC=9,sinC=,求⊙O的半径.23.(8分)已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处,如图1,已知折痕与边BC交于点O,连接AP、OP、OA.若△OCP与△PDA的面积比为1:4,求边CD的长.如图2,在(Ⅰ)的条件下,擦去折痕AO、线段OP,连接BP.动点M在线段AP上(点M与点P、A不重合),动点N在线段AB的延长线上,且BN=PM,连接MN交PB于点F,作ME⊥BP于点E.试问当动点M、N在移动的过程中,线段EF的长度是否发生变化?若变化,说明变化规律.若不变,求出线段EF的长度.24.(10分)如图,在平行四边形ABCD中,BD是对角线,∠ADB=90°,E、F分别为边AB、CD的中点.(1)求证:四边形DEBF是菱形;(2)若BE=4,∠DEB=120°,点M为BF的中点,当点P在BD边上运动时,则PF+PM的最小值为,并在图上标出此时点P的位置.25.(10分)如图,在平行四边形ABCD中,AD>AB.(1)作出∠ABC的平分线(尺规作图,保留作图痕迹,不写作法);(2)若(1)中所作的角平分线交AD于点E,AF⊥BE,垂足为点O,交BC于点F,连接EF.求证:四边形ABFE为菱形.26.(12分)问题提出(1)如图①,在矩形ABCD中,AB=2AD,E为CD的中点,则∠AEB∠ACB(填“>”“<”“=”);问题探究(2)如图②,在正方形ABCD中,P为CD边上的一个动点,当点P位于何处时,∠APB最大?并说明理由;问题解决(3)如图③,在一幢大楼AD上装有一块矩形广告牌,其侧面上、下边沿相距6米(即AB=6米),下边沿到地面的距离BD=11.6米.如果小刚的睛睛距离地面的高度EF为1.6米,他从远处正对广告牌走近时,在P处看广告效果最好(视角最大),请你在图③中找到点P的位置,并计算此时小刚与大楼AD之间的距离.27.(12分)如图,在平面直角坐标系xOy中,已知点A(3,0),点B(0,3),点O为原点.动点C、D分别在直线AB、OB上,将△BCD沿着CD折叠,得△B'CD.(Ⅰ)如图1,若CD⊥AB,点B'恰好落在点A处,求此时点D的坐标;(Ⅱ)如图2,若BD=AC,点B'恰好落在y轴上,求此时点C的坐标;(Ⅲ)若点C的横坐标为2,点B'落在x轴上,求点B'的坐标(直接写出结果即可).
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、A【解析】【分析】根据主视图是从几何体正面看得到的图形,认真观察实物,可得这个几何体的主视图为长方形上面一个三角形,据此即可得.【详解】观察实物,可知这个几何体的主视图为长方体上面一个三角形,只有A选项符合题意,故选A.【名师点睛】本题考查了几何体的主视图,明确几何体的主视图是从几何体的正面看得到的图形是解题的关键.2、B【解析】
先判断出莱洛三角形等边△DEF绕一周扫过的面积如图所示,利用矩形的面积和扇形的面积之和即可.【详解】如图1中,∵等边△DEF的边长为2π,等边△ABC的边长为3,∴S矩形AGHF=2π×3=6π,由题意知,AB⊥DE,AG⊥AF,
∴∠BAG=120°,∴S扇形BAG==3π,∴图形在运动过程中所扫过的区域的面积为3(S矩形AGHF+S扇形BAG)=3(6π+3π)=27π;故选B.【点睛】本题考查轨迹,弧长公式,莱洛三角形的周长,矩形,扇形面积公式,解题的关键是判断出莱洛三角形绕等边△DEF扫过的图形.3、C【解析】
由统计图中提供的数据,根据众数、中位数、平均数、极差的定义分别列出算式,求出答案:【详解】解:∵90出现了5次,出现的次数最多,∴众数是90;∵共有10个数,∴中位数是第5、6个数的平均数,∴中位数是(90+90)÷2=90;∵平均数是(80×1+85×2+90×5+95×2)÷10=89;极差是:95﹣80=1.∴错误的是C.故选C.4、B【解析】
直接得出两位数是3的倍数的个数,再利用概率公式求出答案.【详解】∵一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,十位数为3,则两位数是3的倍数的个数为2.∴得到的两位数是3的倍数的概率为:=.故答案选:B.【点睛】本题考查了概率的知识点,解题的关键是根据题意找出两位数是3的倍数的个数再运用概率公式解答即可.5、D【解析】
找到从正面、左面、上看所得到的图形即可,注意所有的看到的棱都应表现在视图中.【详解】解:此几何体的主视图有两排,从上往下分别有1,3个正方形;
左视图有二列,从左往右分别有2,1个正方形;
俯视图有三列,从上往下分别有3,1个正方形,
故选A.【点睛】本题考查了三视图的知识,关键是掌握三视图所看的位置.掌握定义是关键.此题主要考查了简单组合体的三视图,准确把握观察角度是解题关键.6、D【解析】试题分析:2013年的产量=2011年的产量×(1+年平均增长率)2,把相关数值代入即可.解:2012年的产量为100(1+x),2013年的产量为100(1+x)(1+x)=100(1+x)2,即所列的方程为100(1+x)2=144,故选D.点评:考查列一元二次方程;得到2013年产量的等量关系是解决本题的关键.7、B【解析】
直接利用已知点坐标建立平面直角坐标系进而得出答案.【详解】解:根据棋子“车”的坐标为(-2,1),建立如下平面直角坐标系:∴棋子“炮”的坐标为(2,1),故答案为:B.【点睛】本题考查了坐标确定位置,正确建立平面直角坐标系是解题的关键.8、C【解析】
根据多项式乘以多项式的法则进行计算即可.【详解】x-2x+5故选:C.【点睛】考查多项式乘以多项式,掌握多项式乘以多项式的运算法则是解题的关键.9、D【解析】A、原式=a2﹣4,不符合题意;B、原式=a2﹣a﹣2,不符合题意;C、原式=a2+b2+2ab,不符合题意;D、原式=a2﹣2ab+b2,符合题意,故选D10、B【解析】
表示16的算术平方根,为正数,再根据二次根式的性质化简.【详解】解:,故选B.【点睛】本题考查了算术平方根,本题难点是平方根与算术平方根的区别与联系,一个正数算术平方根有一个,而平方根有两个.11、B【解析】分析:先由AB∥CD,得∠C=∠ABC=30°,CD=CE,得∠D=∠CED,再根据三角形内角和定理得,∠C+∠D+∠CED=180°,即30°+2∠D=180°,从而求出∠D.详解:∵AB∥CD,∴∠C=∠ABC=30°,又∵CD=CE,∴∠D=∠CED,∵∠C+∠D+∠CED=180°,即30°+2∠D=180°,∴∠D=75°.故选B.点睛:此题考查的是平行线的性质及三角形内角和定理,解题的关键是先根据平行线的性质求出∠C,再由CD=CE得出∠D=∠CED,由三角形内角和定理求出∠D.12、A【解析】
根据图形,结合题目所给的运算法则列出方程组.【详解】图2所示的算筹图我们可以表述为:.故选A.【点睛】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程组.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、1【解析】
先由DE∥BC,可证得△ADE∽△ABC,进而可根据相似三角形得到的比例线段求得BC的长.【详解】解:∵DE∥BC,∴△ADE∽△ABC,∴DE:BC=AD:AB,∵AD=2,DB=4,∴AB=AD+BD=6,∴1:BC=2:6,∴BC=1,故答案为:1.【点睛】考查了相似三角形的性质和判定,关键是求出相似后得出比例式,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.14、x1=1,x2=﹣1.【解析】
直接观察图象,抛物线与x轴交于1,对称轴是x=﹣1,所以根据抛物线的对称性可以求得抛物线与x轴的另一交点坐标,从而求得关于x的一元二次方程﹣x2+bx+c=0的解.【详解】解:观察图象可知,抛物线y=﹣x2+bx+c与x轴的一个交点为(1,0),对称轴为x=﹣1,∴抛物线与x轴的另一交点坐标为(﹣1,0),∴一元二次方程﹣x2+bx+c=0的解为x1=1,x2=﹣1.故本题答案为:x1=1,x2=﹣1.【点睛】本题考查了二次函数与一元二次方程的关系.一元二次方程-x2+bx+c=0的解实质上是抛物线y=-x2+bx+c与x轴交点的横坐标的值.15、﹣1【解析】
根据点C的坐标以及菱形的性质求出点B的坐标,然后利用待定系数法求出k的值即可.【详解】解:∵A(﹣3,4),∴OC==5,∴CB=OC=5,则点B的横坐标为﹣3﹣5=﹣8,故B的坐标为:(﹣8,4),将点B的坐标代入y=得,4=,解得:k=﹣1.故答案为:﹣1.16、-1【解析】试题解析:设点A的坐标为(m,n),因为点A在y=的图象上,所以,有mn=k,△ABO的面积为=1,∴=1,∴=1,∴k=±1,由函数图象位于第二、四象限知k<0,∴k=-1.考点:反比例外函数k的几何意义.17、3或【解析】
以B.E.D为顶点的三角形与△DEF相似分两种情形画图分别求解即可.【详解】如图作CM⊥AB当∠FED=∠EDB时,∵∠B=∠EAF=∠EDF∴△EDF~△DBE∴EF∥CB,设EF交AD于点O∵AO=OD,OE∥BD∴AE=EB=3当∠FED=∠DEB时则∠FED=∠FEA=∠DEB=60°此时△FED~△DEB,设AE=ED=x,作DN⊥AB于N,则EN=,DN=,∵DN∥CM,∴∴∴x∴BE=6-x=故答案为3或【点睛】本题考察学生对相似三角形性质定理的掌握和应用,熟练掌握相似三角形性质定理是解答本题的关键,本题计算量比较大,计算能力也很关键.18、【解析】抛物线的对称轴为:x=1,∴当x>1时,y随x的增大而增大.∴若x1>x2>1
时,y1>y2
.故答案为>三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)政府这个月为他承担的总差价为644元;(2)当销售单价定为34元时,每月可获得最大利润144元;(3)销售单价定为25元时,政府每个月为他承担的总差价最少为544元.【解析】试题分析:(1)把x=24代入y=﹣14x+544求出销售的件数,然后求出政府承担的成本价与出厂价之间的差价;(2)由利润=销售价﹣成本价,得w=(x﹣14)(﹣14x+544),把函数转化成顶点坐标式,根据二次函数的性质求出最大利润;(3)令﹣14x2+644x﹣5444=2,求出x的值,结合图象求出利润的范围,然后设设政府每个月为他承担的总差价为p元,根据一次函数的性质求出总差价的最小值.试题解析:(1)当x=24时,y=﹣14x+544=﹣14×24+544=344,344×(12﹣14)=344×2=644元,即政府这个月为他承担的总差价为644元;(2)依题意得,w=(x﹣14)(﹣14x+544)=﹣14x2+644x﹣5444=﹣14(x﹣34)2+144∵a=﹣14<4,∴当x=34时,w有最大值144元.即当销售单价定为34元时,每月可获得最大利润144元;(3)由题意得:﹣14x2+644x﹣5444=2,解得:x1=24,x2=1.∵a=﹣14<4,抛物线开口向下,∴结合图象可知:当24≤x≤1时,w≥2.又∵x≤25,∴当24≤x≤25时,w≥2.设政府每个月为他承担的总差价为p元,∴p=(12﹣14)×(﹣14x+544)=﹣24x+3.∵k=﹣24<4.∴p随x的增大而减小,∴当x=25时,p有最小值544元.即销售单价定为25元时,政府每个月为他承担的总差价最少为544元.考点:二次函数的应用.20、(1);(2)①;②【解析】
(1)先求出种植C种树苗的人数,根据现种植A、B、C三种树苗一共480棵,可以列出等量关系,解出y与x之间的关系;(2)①分别求出种植A,B,C三种树苗的成本,然后相加即可;②求出种植C种树苗工人的人数,然后用种植C种树苗工人的人数÷总人数即可求出概率.【详解】解:(1)设种植A种树苗的工人为x名,种植B种树苗的工人为y名,则种植C种树苗的人数为(80-x-y)人,根据题意,得:8x+6y+5(80-x-y)=480,整理,得:y=-3x+80;(2)①w=15×8x+12×6y+8×5(80-x-y)=80x+32y+3200,把y=-3x+80代入,得:w=-16x+5760,②种植的总成本为5600元时,w=-16x+5760=5600,解得x=10,y=-3×10+80=50,即种植A种树苗的工人为10名,种植B种树苗的工人为50名,种植B种树苗的工人为:80-10-50=20名.采访到种植C种树苗工人的概率为:=.【点睛】本题主要考查了一次函数的实际问题,以及概率的求法,能够将实际问题转化成数学模型是解答此题的关键.21、(1)150,(1)证明见解析(3)【解析】
(1)根据旋转变换的性质得到△PAP′为等边三角形,得到∠P′PC=90°,根据勾股定理解答即可;(1)如图1,作将△ABP绕点A逆时针旋转110°得到△ACP′,连接PP′,作AD⊥PP′于D,根据余弦的定义得到PP′=PA,根据勾股定理解答即可;(3)与(1)类似,根据旋转变换的性质、勾股定理和余弦、正弦的关系计算即可.试题解析:【详解】解:(1)∵△ABP≌△ACP′,∴AP=AP′,由旋转变换的性质可知,∠PAP′=60°,P′C=PB,∴△PAP′为等边三角形,∴∠APP′=60°,∵∠PAC+∠PCA=×60°=30°,∴∠APC=150°,∴∠P′PC=90°,∴PP′1+PC1=P′C1,∴PA1+PC1=PB1,故答案为150,PA1+PC1=PB1;(1)如图,作°,使,连接,.过点A作AD⊥于D点.∵°,即,∴.∵AB=AC,,∴.∴,°.∵AD⊥,∴°.∴在Rt中,.∴.∵°,∴°.∴°.∴在Rt中,.∴;(3)如图1,与(1)的方法类似,作将△ABP绕点A逆时针旋转α得到△ACP′,连接PP′,作AD⊥PP′于D,由旋转变换的性质可知,∠PAP′=α,P′C=PB,∴∠APP′=90°-,∵∠PAC+∠PCA=,∴∠APC=180°-,∴∠P′PC=(180°-)-(90°-)=90°,∴PP′1+PC1=P′C1,∵∠APP′=90°-,∴PD=PA•cos(90°-)=PA•sin,∴PP′=1PA•sin,∴4PA1sin1+PC1=PB1,故答案为4PA1sin1+PC1=PB1.【点睛】本题考查的是旋转变换的性质、等边三角形的性质、勾股定理的应用,掌握等边三角形的性质、旋转变换的性质、灵活运用类比思想是解题的关键.22、⊙O的半径为.【解析】
如图,连接OA.交BC于H.首先证明OA⊥BC,在Rt△ACH中,求出AH,设⊙O的半径为r,在Rt△BOH中,根据BH2+OH2=OB2,构建方程即可解决问题。【详解】解:如图,连接OA.交BC于H.∵点A为的中点,∴OA⊥BD,BH=DH=4,∴∠AHC=∠BHO=90°,∵,AC=9,∴AH=3,设⊙O的半径为r,在Rt△BOH中,∵BH2+OH2=OB2,∴42+(r﹣3)2=r2,∴r=,∴⊙O的半径为.【点睛】本题考查圆心角、弧、弦的关系、垂径定理、勾股定理、锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.23、(1)10;(2).【解析】
(1)先证出∠C=∠D=90°,再根据∠1+∠3=90°,∠1+∠2=90°,得出∠2=∠3,即可证出△OCP∽△PDA;根据△OCP与△PDA的面积比为1:4,得出CP=AD=4,设OP=x,则CO=8﹣x,由勾股定理得x2=(8﹣x)2+42,求出x,最后根据AB=2OP即可求出边AB的长;(2)作MQ∥AN,交PB于点Q,求出MP=MQ,BN=QM,得出MP=MQ,根据ME⊥PQ,得出EQ=PQ,根据∠QMF=∠BNF,证出△MFQ≌△NFB,得出QF=QB,再求出EF=PB,由(1)中的结论求出PB=,最后代入EF=PB即可得出线段EF的长度不变【详解】(1)如图1,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴∠1+∠3=90°,∵由折叠可得∠APO=∠B=90°,∴∠1+∠2=90°,∴∠2=∠3,又∵∠D=∠C,∴△OCP∽△PDA;∵△OCP与△PDA的面积比为1:4,∴,∴CP=AD=4设OP=x,则CO=8﹣x,在Rt△PCO中,∠C=90°,由勾股定理得x2=(8﹣x)2+42,解得:x=5,∴AB=AP=2OP=10,∴边CD的长为10;(2)作MQ∥AN,交PB于点Q,如图2,∵AP=AB,MQ∥AN,∴∠APB=∠ABP=∠MQP.∴MP=MQ,∵BN=PM,∴BN=QM.∵MP=MQ,ME⊥PQ,∴EQ=PQ.∵MQ∥AN,∴∠QMF=∠BNF,∴△MFQ≌△NFB.∴QF=FB,∴EF=EQ+QF=(PQ+QB)=PB,由(1)中的结论可得:PC=4,BC=8,∠C=90°,∴PB=,∴EF=PB=2,∴在(1)的条件下,当点M、N在移动过程中,线段EF的长度不变,它的长度为2.【点睛】本题考查了相似三角形的判定与性质、全等三角形的判定与性质、勾股定理、等腰三角形的性质,关键是做出辅助线,找出全等和相似的三角形24、(1)详见解析;(2).【解析】
(1)根据直角三角形斜边上的中线等于斜边的一半,以及平行四边形的对边相等证明四边形DEBF的四边相等即可证得;(2)连接EM,EM与BD的交点就是P,FF+PM的最小值就是EM的长,证明△BEF是等边三角形,利用三角函数求解.【详解】(1)∵平行四边形ABCD中,AD∥BC,∴∠DBC=∠ADB=90°.∵△ABD中,∠ADB=90°,E时AB的中点,∴DE=AB=AE=BE.同理,BF=DF.∵平行四边形ABCD中,AB=CD,∴DE=BE=BF=DF,∴四边形DEBF是菱形;(2)连接BF.∵菱形DEBF中,∠DEB=120°,∴∠EFB=60°,∴△BEF是等边三角形.∵M是BF的中点,∴EM⊥BF.则EM=BE•sin60°=4×=2.即PF+PM的最小值是2.故答案为:2.【点睛】本题考查了菱形的判定与性质以及图形的对称,根据菱形的对称性,理解PF+PM的最小值就是EM的长是关键.25、解:(1)图见解析;(2)证明见解析.【解析】
(1)根据角平分线的作法作出∠ABC的平分线即可.(2)首先根据角平分线的性质以及平行线的性质得出∠ABE=∠AEB,进而得出△ABO≌△FBO,进而利用AF⊥BE,BO=EO,AO=FO,得出即可.【详解】解:(1)如图所示:(2)证明:∵BE平分∠ABC,∴∠ABE=∠EAF.∵平行四边形ABCD中,AD//BC∴∠EBF=∠AEB,∴∠ABE=∠AEB.∴AB=AE.∵AO⊥BE,∴BO=EO.∵在△ABO和△FBO中,∠ABO=∠FBO,BO=EO,∠AOB=∠FOB,∴△ABO≌△FBO(ASA).∴AO=FO.∵AF⊥BE,BO=EO,AO=FO.∴四边形ABFE为菱形.26、(1)>;(2)当点P位于CD的中点时,∠APB最大,理由见解析;(3)4米.【解析】
(1)过点E作EF⊥AB于点F,由矩形的性质和等腰三角形的判定得到:△AEF是等腰直角三角形,易证∠AEB=90°,而∠ACB<90°,由此可以比较∠AEB与∠ACB的大小(2)假设P为CD的中点,作△APB的外接圆⊙O,则此时CD切⊙O于P,在CD上取任意异于P点的点E,连接AE,与⊙O交于点F,连接BE、BF;由∠AFB是△EFB的外角,得∠AFB>∠AEB,且∠AFB与∠APB均为⊙O中弧AB所对的角,则∠AFB=∠APB,即可判断∠APB与∠AEB的大小关系,即可得点P位于何处时,∠APB最大;(3)过点E作CE∥DF,交AD于点C,作AB的垂直平分线,垂足为点Q,并在垂直平分线上取点O,使OA=CQ,以点O为圆心,OB为半径作圆,则⊙O切CE于点G,连接OG,并延长交DF于点P,连接OA,再利用勾股定理以及长度关系即可得解.【详解】解:(1)∠AEB>∠ACB,理由如下:如图1,过点E作EF⊥AB于点F,∵在矩形ABCD中,AB=2AD,E为CD中点,∴四边形ADEF是正方形,∴∠AEF=45°,同理,∠BEF=45°,∴∠AEB=90°.而在直角△ABC中,∠ABC=90°
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广东松山职业技术学院《地图与测量学》2023-2024学年第一学期期末试卷
- 广东水利电力职业技术学院《草食动物生产学》2023-2024学年第一学期期末试卷
- 广东石油化工学院《工程技术基础》2023-2024学年第一学期期末试卷
- 广东汕头幼儿师范高等专科学校《日用陶瓷创新设计》2023-2024学年第一学期期末试卷
- 广东培正学院《商务公文写作》2023-2024学年第一学期期末试卷
- 七年级上册《第一章 有理数章末小结与考点检测》课件
- 广东茂名幼儿师范专科学校《科技论文撰写实践》2023-2024学年第一学期期末试卷
- 关爱生命-慢病识别及管理(苏州卫生职业技术学院)学习通测试及答案
- 【备战2021高考】全国2021届高中地理试题汇编(11月份):E2内外力作用对地形的影响
- 【名师一号】2020-2021学年高中英语(北师大版)必修5随堂演练:第十四单元综合测评
- 2023-2024学年上海市普陀区三年级(上)期末数学试卷
- 小班班本课程《吃饭这件小事》
- 中国特色大国外交和推动构建人类命运共同体
- 《风电场项目经济评价规范》(NB-T 31085-2016)
- 室内装饰装修工程施工组织设计方案(完整版)
- 消防系统检测方案(完整版)
- 关于童话故事的题目
- 工程竣工验收备案申请表1
- 巢湖地区地质调查报告 最终版[沐风文苑]
- 生产计划流程内容培训工厂生产线管理工作总结汇报PPT模板
- 印象东城区少年宫
评论
0/150
提交评论