




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第第页中考数学总复习《销售问题(实际问题与二次函数)》专项训练题(附带有答案)学校:___________班级:___________姓名:___________考号:___________1.某养殖场需要定期购买饲料,已知该养殖场每天需要200千克饲料,饲料的价格为1.8元/千克,饲料的保管费与其他费用平均每天为0.05元/千克,购买饲料每次的运费为180元.任务1:该养殖场多少天购买一次饲料才能使平均每天支付的总费用最少;小明的分析如下:如果2天购买一次,则保管费与其他费用需支付200×0.05=10(元);如果3天购买一次,则保管费与其他费用需支付200×2×0.05+200×0.05=30(元);如果4天购买一次,则保管费与其他费用需支付200×3×0.05+200×2×0.05+200×0.05=60(元),他发现已有的数学模型不能解决这个问题,想到了用函数图象的方法解决,设x天购买一次饲料,平均每天支付的总费用为y元,下面是他解决这个问题的过程,请解答相关问题.(1)计算得到x与y的部分对应值如下表,请补全表格;x/天…2345678910…Y/元…455.0430.0420.0415.7417.5420.0423.0…(2)在平面直角坐标系中,描出(1)中所对应的点;(3)结合图象:养殖场天购买一次饲料才能使平均每天支付的总费用最少.任务2:提供饲料的公司规定,当一次购买饲料不少于2000千克时,价格可享受九折优惠,在该养殖场购买饲料时是否需要考虑这一优惠条件,简要说明理由.2.某电子厂商投产一种新型电子产品,每件制造成本为18元,试销过程中发现,每月销售量y(万件)与销售单价x(元)之间的关系,可以近似的看作一次函数.(利润售价制造成本)(1)写出每月的利润z(万元)与销售单价x(元)之间的函数表达式;(不必写出x的取值范围)(2)当销售单价定为多少元时,厂商每月能获得350万元的利润?当销售单价定为多少元时,厂商每月能获得最大利润?最大利润是多少?3.某企业为重庆计算机产业基地提供电脑配件,受美元走低的影响,从去年1至9月,该配件的原材料价格一路攀升,每件配件的原材料价格y1(元)与月份x(1≤x≤9,且x取整数)之间的函数关系如下表:月份x123456789价格y1(元/件)560580600620640660680700720随着国家调控措施的出台,原材料价格的涨势趋缓,10至12月每件配件的原材料价格y2(元)与月份x(10≤x≤12,且x取整数)之间存在如图所示的变化趋势:(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出y1与x之间的函数关系式,根据如图所示的变化趋势,直接写出y2与x之间满足的一次函数关系式;(2)若去年该配件每件的售价为1000元,生产每件配件的人力成本为50元,其它成本30元,该配件在1至9月的销售量p1(万件)与月份x满足函数关系式p1=0.1x+1.1(1≤x≤9,且x取整数)10至12月的销售量p2(万件)与月份x满足函数关系式p2=﹣0.1x+2.9(10≤x≤12,且x取整数).求去年哪个月销售该配件的利润最大,并求出这个最大利润;(3)今年1至5月,每件配件的原材料价格均比去年12月上涨60元,人力成本比去年增加20%,其它成本没有变化,该企业将每件配件的售价在去年的基础上提高a%,与此同时每月销售量均在去年12月的基础上减少0.1a%.这样,在保证每月上万件配件销量的前提下,完成了1至5月的总利润1700万元的任务,请你参考以下数据,估算出a的整数值.(参考数据:992=9901,982=9604,972=9409,962=9216,952=9025)4.某景区有两个景点需购票游览,售票处出示的三种购票方式如下:方式1:只购买景点A,元/人;方式2:只购买景点B,元/人;方式3:景点A和B联票,元/人.预测,四月份选择这三种购票方式的人数分别有2万、1万和1万.为增加收入,对门票价格进行调整,发现当方式1和2的门票价格不变时,方式3的联票价格每下降1元,将有原计划只购买A门票的人和原计划只购买B门票的人改为购买联票.(1)若联票价格下降5元,则购买方式1门票的人数有_________万人,购买方式2门票的人数有_________万人,购买方式3门票的人数有_________万人;并计算门票总收入有多少万元?(2)当联票价格下降x(元)时,请求出四月份的门票总收入w(万元)与x(元)之间的函数关系式,并求出联票价格为多少元时,四月份的门票总收入最大?最大值是多少万元?5.新冠肺炎疫情后期,我市某药店进了一批口罩,成本价为1元/个,投入市场销售,其销售单价不低于成本,一段时间调查,发现每天销售量y(个)与销售单价x(元/个)之间存在一次函数关系,且有两天数据为:销售价定1.3元,每天销售1080个;销售价定为1.5元,每天销售1000个.(1)直接写出y与x之间的函数关系式;(2)如果该药店销售口罩每天获得800元的利润,那么这种口罩的销售单价定为多少元?(3)设每天的总利润为w元,当销售单价定为多少元时,该药店每天的利润最大?最大利润是多少元?6.苍溪独特的土壤、水分、气候组成的生态系统,成为猕猴桃的乐土,被国家誉为“红心猕猴桃第一县、红心猕猴桃之乡”.某水果店销售红心猕猴桃,平均每天可售出120箱,每箱盈利60元,春节临近,为了扩大销售,水果店决定采取适当的降价措施,经调查发现,每箱红心猕猴桃每降价5元,水果店平均每天可多售出20箱.设每箱红心猕猴桃降价x元.(1)当时,求销售该红心猕猴桃的总利润;(2)设每天销售该红心猕猴桃的总利润为w元.①求w与x之间的函数解析式;②试判断总利润能否达到8200元,如果能达到,求出此时x的值;如果达不到,求出w的最大值.7.某农作物的生长率p与温度t(℃)有如下关系;如图,当时可近似用函数刻画;当可近似用函数刻画.(1)求h的值.(2)按照经验,该作物提前上市的天数m(天)与生长率p之间满足已学过的函数关系,部分数据如下:生长率p0.20.250.30.35提前上市的天数m(天)051015求:①m关于p的函数表达式;②用含t的代数式表示m.③天气寒冷,大棚加温可改变农作物生长速度.大棚恒温20℃时每天的成本为100元,计划该作物30天后上市.现根据市场调查:每提前一天上市售出(一次售完),销售额可增加600元.因此决定给大棚继续加温,但加温导致成本增加,估测加温到时的成本为200元/天,但若欲加温到,由于要采用特殊方法,成本增加到400元/天,问加温到多少度时增加的利润最大?并说明理由.(注:农作物上市售出后大棚暂停使用)8.利达经销店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7.5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元.设每吨材料售价为x(元),该经销店的月利润为y(元).(1)当每吨售价是240元时,计算此时的月销售量;(2)求出y与x的函数关系式(不要求写出x的取值范围);(3)该经销店要获得最大月利润,售价应定为每吨多少元?9.已知一批商品的单价为20元.若每件按30元的价格销售时,每天能卖出60件;若每件按50元的价格销售时,每天能卖出20件.假定每天销售件数y(件)与销售价格x(元/件)满足.(1)求y与x满足的函数关系式不要求写出x的取值范围;(2)在不考虑其他因素的情况下,每件商品销售价格定为多少元时才能使每天获得的利润最大?10.我市某企业安排20名工人生产甲、乙两种产品,根据生产经验,每人每天生产2件甲产品或1件乙产品(每人每天只能生产一种产品).甲产品生产成本为每件10元;若安排1人生产一件乙产品,则成本为38元,以后每增加1人,平均每件乙产品成本降低2元.规定甲产品每天至少生产20件.设每天安排人生产乙产品.(1)根据信息填表:产品种类每天工人数(人)每天产量(件)每件产品生产成本(元)甲10乙x(2)为了增加利润,企业须降低成本,该企业如何安排工人生产才能使得每天的生产总成本最低?最低成本是多少?(3)该企业准备通过对外招工,增加工人数量的方式降低每天的生产总成本,那么至少招多少名工人才能实现每天的生产总成本不高于350元?11.迅达水果合作社,为了提高樱桃和枇杷两种水果的销售量,决定将两种水果组合成礼盒销售.樱桃的收购单价是枇杷收购单价的倍,每个礼盒装有樱桃和枇杷,每盒还需其他成本元.迅达水果合作社推出这礼盒后,经市场调查发现,该礼盒的日销售量(个)与礼盒的销售单价(元)之间满足一次函数.关于销售单价、日销售量、日销售利润的几组对应值如下表:销售单价(元/个)日销售量有(个)日销售利润(元)【提示:成本=水果收购价+其他成本;日销售利润=(销售单价-成本)×日销售量】(1)求与之间的函数关系式(不要求写的取值范围);(2)求樱桃的收购单价;(3)进入月份,樱桃的收购单价上涨百分数为,枇杷的收购单价下降百分数也为,在销售过程中,日销售量与销售单价仍存在(1)中的关系,统计发现,当销售单价定为元时,日销售利润最大,求日销售最大利润.12.某茶叶经销商以每千克18元的价格购进一批宁波白茶鲜茶叶加工后出售,已知加工过程中质量损耗了40%,该商户对该茶叶试销期间,销售单价不低于成本单价,且每千克获利不得高于成本单价的60%,经试销发现,每天的销售量y(千克)与销售单价x(元/千克)符合一次函数,且x=35时,y=45;x=42时,y=38.(1)求一次函数的表达式;(2)若该商户每天获得利润(不计加工费用)为W元,试写出利润W与销售单价x之间的关系式;销售单价每千克定为多少元时,商户每天可获得最大利润,最大利润是多少元?(3)若该商户每天获得利润不低于225元,试确定销售单价x的范围.13.“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为元/件,每天销售(件)与销售单价(元)之间存在一次函数关系,如图所示.(1)求与之间的函数关系;(2)如果规定每天漆器笔筒的销售量不低于件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于元,试确定该漆器笔筒销售单价的范围.14.某大学生利用暑假40天社会实践进行创业,他在网上开了一家微店,销售推广一种成本为25元/件的新型商品.在40天内,其销售单价n(元/件)与时间x(天)的关系式是:当1≤x≤20时;当21≤x≤40时.这40天中的日销售量m(件)与时间x(天)符合函数关系,具体情况记录如下表(天数为整数):时间x(天)510152025…日销售量m(件)4540353025…(1)请求出日销售量m(件)与时间x(天)之间的函数关系式;(2)若设该同学微店日销售利润为w元,试写出日销售利润w(元)与时间x(天)的函数关系式;15.一大型商场经营某种品牌商品,该商品的进价为每件30元,根据市场调查发现,该商品每周的销售量y(件)与售价x(元件)(x为正整数)之间满足一次函数关系,下表记录的是某三周的有关数据:x(元/件)405060y(件)1000095009000(1)求y与x的函数关系式(不求自变量的取值范围);(2)在销售过程中要求销售单价不低于成本价,且不高于150元/件.若某一周该商品的销售量不少于6000件,求这一周该商场销售这种商品获得的最大利润和售价分别为多少元?(3)抗疫期间,该商场这种商品售价不大于150元/件时,每销售一件商品便向某慈善机构捐赠m元,捐赠后发现,该商场每周销售这种商品的利润仍随售价的增大而增大.请求出m的取值范围.参考答案:1.任务1:(1)补全表格;416.0,415.0;(2)略;(3)6;任务2:需要考虑这一优惠条件.2.(1);(2)25元或43元;34元,512万元.3.(1)y2=10x+630(10≤x≤12,且x取整数);(2)x=4时,W最大=450元;x=10时,W最大=361元;(3)a的整数解为10.4.(1)1.8;0.7;1.5;万元(2);票价格为元时,四月份的门票总收入最大,最大值是万元5.(1);(2)2元或3元;(3)销售单价为元,最大利润为900元.6.(1)8000元(2)①;②不能达到8200元,w的最大值是81007.(1).(2)①;②;③当加温到度时,增加的利润最大,最大值为11000元.8.(1)60;(2);(3)210.9.(1)(2)每件商
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 沙湾县2025年六年级下学期小升初招生数学试卷含解析
- 上海市浦东新区2025年小升初数学模拟试卷含解析
- 南通职业大学《园林生态学》2023-2024学年第二学期期末试卷
- 江苏省扬州市江都区八校2025年初三下学期阶段测试(二)英语试题试卷含答案
- 贵州机电职业技术学院《系统工程基础》2023-2024学年第一学期期末试卷
- 山西省三区八校2025年高三下学期第三次诊断考试物理试题含解析
- 2025年山东省济南市山东师范大学附中高三第二学期开学统练数学试题含解析
- 2025年贵州省黔南州第二学期期末教学质量检测试题初三化学试题含解析
- 云南省保山市隆阳区保山曙光学校2025届数学五下期末监测模拟试题含答案
- 2022抖音知识课件
- 金氏五行升降中医方集
- 大学生创新创业知能训练与指导智慧树知到期末考试答案章节答案2024年西北农林科技大学
- abb继电保护615系列操作手册
- 挖掘机部件英语对照表
- 办公室口号大全
- 办公建筑设计规范2019
- 船舶建造质量标准(轮机部分)
- 吉林省公务员(参照管理人员)调任(转任)审批表
- 接地网测试报告.docx
- 小学科学期末复习经验交流
- 心律失常紧急处理静脉药物一览表
评论
0/150
提交评论