版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年甘肃省平凉市崆峒区重点中学中考数学最后冲刺模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.已知⊙O的半径为3,圆心O到直线L的距离为2,则直线L与⊙O的位置关系是()A.相交 B.相切 C.相离 D.不能确定2.如图,函数y=﹣2x+2的图象分别与x轴,y轴交于A,B两点,点C在第一象限,AC⊥AB,且AC=AB,则点C的坐标为()A.(2,1) B.(1,2) C.(1,3) D.(3,1)3.如图,AB是⊙O的切线,半径OA=2,OB交⊙O于C,∠B=30°,则劣弧的长是()A.π B. C.π D.π4.在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是()A. B. C. D.5.若代数式有意义,则实数x的取值范围是()A.x=0 B.x=3 C.x≠0 D.x≠36.下列多边形中,内角和是一个三角形内角和的4倍的是()A.四边形B.五边形C.六边形D.八边形7.单项式2a3b的次数是()A.2 B.3 C.4 D.58.根据中国铁路总公司3月13日披露,2018年铁路春运自2月1日起至3月12日止,为期40天全国铁路累计发送旅客3.82亿人次.3.82亿用科学记数法可以表示为()A.3.82×107 B.3.82×108 C.3.82×109 D.0.382×10109.等腰三角形的两边长分别为5和11,则它的周长为()A.21 B.21或27 C.27 D.2510.“a是实数,”这一事件是()A.不可能事件 B.不确定事件 C.随机事件 D.必然事件二、填空题(共7小题,每小题3分,满分21分)11.如图,▱ABCD中,对角线AC,BD相交于点O,且AC⊥BD,请你添加一个适当的条件________,使ABCD成为正方形.12.如图,点A是反比例函数y=﹣(x<0)图象上的点,分别过点A向横轴、纵轴作垂线段,与坐标轴恰好围成一个正方形,再以正方形的一组对边为直径作两个半圆,其余部分涂上阴影,则阴影部分的面积为______.13.如图,矩形ABCD中,AB=2,点E在AD边上,以E为圆心,EA长为半径的⊙E与BC相切,交CD于点F,连接EF.若扇形EAF的面积为43π,则14.新定义[a,b]为一次函数(其中a≠0,且a,b为实数)的“关联数”,若“关联数”[3,m+2]所对应的一次函数是正比例函数,则关于x的方程1x-1+115.抛物线y=ax2+bx+c的顶点为D(-1,2),与x轴的一个交点A在点(-3,1)和(-2,1)之间,其部分图象如图,则以下结论:①b2-4ac<1;②当x>-1时y随x增大而减小;③a+b+c<1;④若方程ax2+bx+c-m=1没有实数根,则m>2;
⑤3a+c<1.其中,正确结论的序号是________________.16.安全问题大于天,为加大宣传力度,提高学生的安全意识,乐陵某学校在进行防溺水安全教育活动中,将以下几种在游泳时的注意事项写在纸条上并折好,内容分别是:①互相关心;②互相提醒;③不要相互嬉水;④相互比潜水深度;⑤选择水流湍急的水域;⑥选择有人看护的游泳池.小颖从这6张纸条中随机抽出一张,抽到内容描述正确的纸条的概率是_____.17.化简:=_____.三、解答题(共7小题,满分69分)18.(10分)一个不透明的袋子中,装有标号分别为1、-1、2的三个小球,他们除标号不同外,其余都完全相同;(1)搅匀后,从中任意取一个球,标号为正数的概率是;(2)搅匀后,从中任取一个球,标号记为k,然后放回搅匀再取一个球,标号记为b,求直线y=kx+b经过一、二、三象限的概率.19.(5分)如图,△BAD是由△BEC在平面内绕点B旋转60°而得,且AB⊥BC,BE=CE,连接DE.(1)求证:△BDE≌△BCE;(2)试判断四边形ABED的形状,并说明理由.20.(8分)先化简,再求值:(1﹣)÷,其中x=1.21.(10分)目前节能灯在城市已基本普及,今年某省面向农村地区推广,为响应号召,某商场用3300元购进节能灯100只,这两种节能灯的进价、售价如表:进价元只售价元只甲种节能灯3040乙种节能灯3550求甲、乙两种节能灯各进多少只?全部售完100只节能灯后,该商场获利多少元?22.(10分)元旦放假期间,小明和小华准备到西安的大雁塔(记为A)、白鹿原(记为B)、兴庆公园(记为C)、秦岭国家植物园(记为D)中的一个景点去游玩,他们各自在这四个景点中任选一个,每个景点被选中的可能性相同.(1)求小明选择去白鹿原游玩的概率;(2)用树状图或列表的方法求小明和小华都选择去秦岭国家植物园游玩的概率.23.(12分)如图,在Rt△ABC中,∠C=90°,AC=3,BC=1.若以C为圆心,R为半径所作的圆与斜边AB只有一个公共点,则R的取值范围是多少?24.(14分)如图,AB是⊙O的直径,D为⊙O上一点,过弧BD上一点T作⊙O的切线TC,且TC⊥AD于点C.(1)若∠DAB=50°,求∠ATC的度数;(2)若⊙O半径为2,TC=3,求AD的长.
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】试题分析:根据圆O的半径和,圆心O到直线L的距离的大小,相交:d<r;相切:d=r;相离:d>r;即可选出答案.解:∵⊙O的半径为3,圆心O到直线L的距离为2,∵3>2,即:d<r,∴直线L与⊙O的位置关系是相交.故选A.考点:直线与圆的位置关系.2、D【解析】
过点C作CD⊥x轴与D,如图,先利用一次函数图像上点的坐标特征确定B(0,2),A(1,0),再证明△ABO≌△CAD,得到AD=OB=2,CD=AO=1,则C点坐标可求.【详解】如图,过点C作CD⊥x轴与D.∵函数y=﹣2x+2的图象分别与x轴,y轴交于A,B两点,∴当x=0时,y=2,则B(0,2);当y=0时,x=1,则A(1,0).∵AC⊥AB,AC=AB,∴∠BAO+∠CAD=90°,∴∠ABO=∠CAD.在△ABO和△CAD中,∠AOB=【点睛】本题主要考查一次函数的基本概念。角角边定理、全等三角形的性质以及一次函数的应用,熟练掌握相关知识点是解答的关键.3、C【解析】
由切线的性质定理得出∠OAB=90°,进而求出∠AOB=60°,再利用弧长公式求出即可.【详解】∵AB是⊙O的切线,∴∠OAB=90°,∵半径OA=2,OB交⊙O于C,∠B=30°,∴∠AOB=60°,∴劣弧ACˆ的长是:=,故选:C.【点睛】本题考查了切线的性质,圆周角定理,弧长的计算,解题的关键是先求出角度再用弧长公式进行计算.4、A【解析】
首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到黄球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.【详解】画树状图如下:由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有4种结果,∴两次都摸到黄球的概率为,故选A.【点睛】此题考查的是用列表法或树状图法求概率的知识.注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.5、D【解析】分析:根据分式有意义的条件进行求解即可.详解:由题意得,x﹣3≠0,解得,x≠3,故选D.点睛:此题考查了分式有意义的条件.注意:分式有意义的条件事分母不等于零,分式无意义的条件是分母等于零.6、C【解析】
利用多边形的内角和公式列方程求解即可【详解】设这个多边形的边数为n.由题意得:(n﹣2)×180°=4×180°.解得:n=1.答:这个多边形的边数为1.故选C.【点睛】本题主要考查的是多边形的内角和公式,掌握多边形的内角和公式是解题的关键.7、C【解析】分析:根据单项式的性质即可求出答案.详解:该单项式的次数为:3+1=4故选C.点睛:本题考查单项式的次数定义,解题的关键是熟练运用单项式的次数定义,本题属于基础题型.8、B【解析】
根据题目中的数据可以用科学记数法表示出来,本题得以解决.【详解】解:3.82亿=3.82×108,故选B.【点睛】本题考查科学记数法-表示较大的数,解答本题的关键是明确科学记数法的表示方法.9、C【解析】试题分析:分类讨论:当腰取5,则底边为11,但5+5<11,不符合三角形三边的关系;当腰取11,则底边为5,根据等腰三角形的性质得到另外一边为11,然后计算周长.解:当腰取5,则底边为11,但5+5<11,不符合三角形三边的关系,所以这种情况不存在;当腰取11,则底边为5,则三角形的周长=11+11+5=1.故选C.考点:等腰三角形的性质;三角形三边关系.10、D【解析】是实数,||一定大于等于0,是必然事件,故选D.二、填空题(共7小题,每小题3分,满分21分)11、∠BAD=90°(不唯一)【解析】
根据正方形的判定定理添加条件即可.【详解】解:∵平行四边形ABCD的对角线AC与BD相交于点O,且AC⊥BD,∴四边形ABCD是菱形,当∠BAD=90°时,四边形ABCD为正方形.故答案为:∠BAD=90°.【点睛】本题考查了正方形的判定:先判定平行四边形是菱形,判定这个菱形有一个角为直角.12、4﹣π【解析】
由题意可以假设A(-m,m),则-m2=-4,求出点A坐标即可解决问题.【详解】由题意可以假设A(-m,m),则-m2=-4,∴m=≠±2,∴m=2,∴S阴=S正方形-S圆=4-π,故答案为4-π.【点睛】本题考查反比例函数图象上的点的特征、正方形的性质、圆的面积公式等知识,解题的关键是灵活运用所学知识解决问题13、1【解析】分析:设∠AEF=n°,由题意nπ×2详解:设∠AEF=n°,由题意nπ×2∴∠AEF=120°,∴∠FED=60°,∵四边形ABCD是矩形,∴BC=AD,∠D=90°,∴∠EFD=10°,∴DE=12∴BC=AD=2+1=1,故答案为1.点睛:本题考查切线的性质、矩形的性质、扇形的面积公式、直角三角形10度角性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.14、53【解析】试题分析:根据“关联数”[3,m+2]所对应的一次函数是正比例函数,得到y=3x+m+2为正比例函数,即m+2=0,解得:m=-2,则分式方程为1x-1去分母得:2-(x-1)=2(x-1),去括号得:2-x+1=2x-2,解得:x=53经检验x=53考点:1.一次函数的定义;2.解分式方程;3.正比例函数的定义.15、②③④⑤【解析】试题解析:∵二次函数与x轴有两个交点,∴b2-4ac>1,故①错误,观察图象可知:当x>-1时,y随x增大而减小,故②正确,∵抛物线与x轴的另一个交点为在(1,1)和(1,1)之间,∴x=1时,y=a+b+c<1,故③正确,∵当m>2时,抛物线与直线y=m没有交点,∴方程ax2+bx+c-m=1没有实数根,故④正确,∵对称轴x=-1=-,∴b=2a,∵a+b+c<1,∴3a+c<1,故⑤正确,故答案为②③④⑤.16、【解析】
根据事件的描述可得到描述正确的有①②③⑥,即可得到答案.【详解】∵共有6张纸条,其中正确的有①互相关心;②互相提醒;③不要相互嬉水;⑥选择有人看护的游泳池,共4张,∴抽到内容描述正确的纸条的概率是,故答案为:.【点睛】此题考查简单事件的概率的计算,正确掌握事件的概率计算公式是解题的关键.17、【解析】
先算除法,再算减法,注意把分式的分子分母分解因式【详解】原式===【点睛】此题考查分式的混合运算,掌握运算法则是解题关键三、解答题(共7小题,满分69分)18、(1);(2)【解析】【分析】(1)直接运用概率的定义求解;(2)根据题意确定k>0,b>0,再通过列表计算概率.【详解】解:(1)因为1、-1、2三个数中由两个正数,所以从中任意取一个球,标号为正数的概率是.(2)因为直线y=kx+b经过一、二、三象限,所以k>0,b>0,又因为取情况:kb1-1211,11,-11,2-1-1,1-1,-1-1.222,12,-12,2共9种情况,符合条件的有4种,所以直线y=kx+b经过一、二、三象限的概率是.【点睛】本题考核知识点:求规概率.解题关键:把所有的情况列出,求出要得到的情况的种数,再用公式求出.19、证明见解析.【解析】
(1)根据旋转的性质可得DB=CB,∠ABD=∠EBC,∠ABE=60°,然后根据垂直可得出∠DBE=∠CBE=30°,继而可根据SAS证明△BDE≌△BCE;(2)根据(1)以及旋转的性质可得,△BDE≌△BCE≌△BDA,继而得出四条棱相等,证得四边形ABED为菱形.【详解】(1)证明:∵△BAD是由△BEC在平面内绕点B旋转60°而得,∴DB=CB,∠ABD=∠EBC,∠ABE=60°,∵AB⊥EC,∴∠ABC=90°,∴∠DBE=∠CBE=30°,在△BDE和△BCE中,∵,∴△BDE≌△BCE;(2)四边形ABED为菱形;由(1)得△BDE≌△BCE,∵△BAD是由△BEC旋转而得,∴△BAD≌△BEC,∴BA=BE,AD=EC=ED,又∵BE=CE,∴BA=BE=ED=AD∴四边形ABED为菱形.考点:旋转的性质;全等三角形的判定与性质;菱形的判定.20、.【解析】
原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【详解】原式==当x=1时,原式=.【点睛】本题考查了分式的化简求值,熟练掌握运算法则是解答本题的关键.21、甲、乙两种节能灯分别购进40、60只;商场获利1300元.【解析】
(1)利用节能灯数量和所用的价钱建立方程组即可;(2)每种灯的数量乘以每只灯的利润,最后求出之和即可.【详解】(1)设商场购进甲种节能灯x只,购进乙种节能灯y只,根据题意,得,解这个方程组,得
,答:甲、乙两种节能灯分别购进40、60只.(2)商场获利元,答:商场获利1300元.【点睛】此题是二元一次方程组的应用,主要考查了列方程组解应用题的步骤和方法,利润问题,解本题的关键是求出两种节能灯的数量.22、(1);(2)【解析】
(1)利用概率公式直接计算即可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024版企业股权并购合同样例版B版
- 2024版办公室文员聘用合同范本
- 2024年高效公路货运协议规范
- 2024年度专业彩色打印机租赁合同范文3篇
- 2024版培训班协议书
- 2024年钢结构工程施工合同
- 2024年环保服务合同标的与环境改善要求
- 2024版吊车拆装服务合同2篇
- 劳务发放协议书(2篇)
- 动漫形象内容授权合同(2篇)
- 辅导员年度述职报告
- 七年级历史试卷上册可打印
- 2024-2030年全球及中国洞察引擎行业市场现状供需分析及市场深度研究发展前景及规划可行性分析研究报告
- 《东南亚经济与贸易》习题集、案例、答案、参考书目
- 烧烤店装修合同范文模板
- 2024年中国樱桃番茄种市场调查研究报告
- 数据分析基础与应用指南
- 吉林市2024-2025学年度高三第一次模拟测试 (一模)数学试卷(含答案解析)
- 自考《英语二》高等教育自学考试试题与参考答案(2024年)
- 人教版(PEP)小学六年级英语上册全册教案
- 广东省广州市海珠区2023-2024学年六年级上学期月考英语试卷
评论
0/150
提交评论