版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江苏省无锡江阴市要塞片市级名校中考数学模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.一次数学测试后,随机抽取九年级某班5名学生的成绩如下:91,78,1,85,1.关于这组数据说法错误的是()A.极差是20 B.中位数是91 C.众数是1 D.平均数是912.七年级1班甲、乙两个小组的14名同学身高(单位:厘米)如下:甲组158159160160160161169乙组158159160161161163165以下叙述错误的是()A.甲组同学身高的众数是160B.乙组同学身高的中位数是161C.甲组同学身高的平均数是161D.两组相比,乙组同学身高的方差大3.如图,将△ABC沿着DE剪成一个小三角形ADE和一个四边形D'E'CB,若DE∥BC,四边形D'E'CB各边的长度如图所示,则剪出的小三角形ADE应是()A. B. C. D.4.如图,已知直线a∥b∥c,直线m,n与a,b,c分别交于点A,C,E,B,D,F,若AC=4,CE=6,BD=3,则DF的值是()A.4 B.4.5 C.5 D.5.55.正比例函数y=2kx的图象如图所示,则y=(k-2)x+1-k的图象大致是()A.B.C.D.6.如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x<3时,y>0,其中正确的是()A.①②④ B.①②⑤ C.②③④ D.③④⑤7.二次函数y=ax²+bx+c(a,b,c为常数)中的x与y的部分对应值如表所示:x-1013y33下列结论:(1)abc<0(2)当x>1时,y的值随x值的增大而减小;(3)16a+4b+c<0(4)x=3是方程ax²+(b-1)x+c=0的一个根;其中正确的个数为()A.4个 B.3个 C.2个 D.1个8.一元二次方程x2+kx﹣3=0的一个根是x=1,则另一个根是()A.3 B.﹣1 C.﹣3 D.﹣29.如图,甲从A点出发向北偏东70°方向走到点B,乙从点A出发向南偏西15°方向走到点C,则∠BAC的度数是()A.85° B.105° C.125° D.160°10.如图,AB∥CD,DE⊥CE,∠1=34°,则∠DCE的度数为()A.34° B.56° C.66° D.54°二、填空题(共7小题,每小题3分,满分21分)11.如图,用圆心角为120°,半径为6cm的扇形纸片卷成一个圆锥形无底纸帽,则这个纸帽的高是_____cm.12.已知一个正数的平方根是3x-2和5x-6,则这个数是_____.13.一个圆锥的母线长15CM.高为9CM.则侧面展开图的圆心角________。14.如图,DA⊥CE于点A,CD∥AB,∠1=30°,则∠D=_____.15.若正多边形的一个内角等于140°,则这个正多边形的边数是_______.16.如图,△ABC中,AB=6,AC=4,AD、AE分别是其角平分线和中线,过点C作CG⊥AD于F,交AB于G,连接EF,则线段EF的长为_____.17.如图,矩形AOCB的两边OC、OA分别位于x轴、y轴上,点B的坐标为B(),D是AB边上的一点.将△ADO沿直线OD翻折,使A点恰好落在对角线OB上的点E处,若点E在一反比例函数的图像上,那么k的值是_______三、解答题(共7小题,满分69分)18.(10分)计算:(1)(2)2﹣|﹣4|+3﹣1×6+20;(2).19.(5分)如图,在矩形ABCD中,对角线AC,BD相交于点O.(1)画出△AOB平移后的三角形,其平移后的方向为射线AD的方向,平移的距离为AD的长.(2)观察平移后的图形,除了矩形ABCD外,还有一种特殊的平行四边形?请证明你的结论.20.(8分)如图,小明今年国庆节到青城山游玩,乘坐缆车,当登山缆车的吊箱经过点A到达点B时,它经过了200m,缆车行驶的路线与水平夹角∠α=16°,当缆车继续由点B到达点D时,它又走过了200m,缆车由点B到点D的行驶路线与水平面夹角∠β=42°,求缆车从点A到点D垂直上升的距离.(结果保留整数)(参考数据:sin16°≈0.27,cos16°≈0.77,sin42°≈0.66,cos42°≈0.74)21.(10分)已知:如图,△MNQ中,MQ≠NQ.(1)请你以MN为一边,在MN的同侧构造一个与△MNQ全等的三角形,画出图形,并简要说明构造的方法;(2)参考(1)中构造全等三角形的方法解决下面问题:如图,在四边形ABCD中,,∠B=∠D.求证:CD=AB.22.(10分)如图,M、N为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞.工程人员为了计算工程量,必须计算M、N两点之间的直线距离,选择测量点A、B、C,点B、C分别在AM、AN上,现测得AM=1千米、AN=1.8千米,AB=54米、BC=45米、AC=30米,求M、N两点之间的距离.23.(12分)某手机经销商计划同时购进一批甲、乙两种型号的手机,若购进2部甲型号手机和1部乙型号手机,共需要资金2800元;若购进3部甲型号手机和2部乙型号手机,共需要资金4600元求甲、乙型号手机每部进价为多少元?该店计划购进甲、乙两种型号的手机销售,预计用不多于1.8万元且不少于1.74万元的资金购进这两部手机共20台,请问有几种进货方案?请写出进货方案售出一部甲种型号手机,利润率为40%,乙型号手机的售价为1280元.为了促销,公司决定每售出一台乙型号手机,返还顾客现金m元,而甲型号手机售价不变,要使(2)中所有方案获利相同,求m的值24.(14分)2018年10月23日,港珠澳大桥正式开通,成为横亘在伶仃洋上的一道靓丽的风景线.大桥主体工程隧道的东、西两端各设置了一个海中人工岛,来衔接桥梁和海地隧道,西人工岛上的点和东人工岛上的点间的距离约为5.6千米,点是与西人工岛相连的大桥上的一点,,,在一条直线上.如图,一艘观光船沿与大桥段垂直的方向航行,到达点时观测两个人工岛,分别测得,与观光船航向的夹角,,求此时观光船到大桥段的距离的长(参考数据:,,,,,).
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】
试题分析:因为极差为:1﹣78=20,所以A选项正确;从小到大排列为:78,85,91,1,1,中位数为91,所以B选项正确;因为1出现了两次,最多,所以众数是1,所以C选项正确;因为,所以D选项错误.故选D.考点:①众数②中位数③平均数④极差.2、D【解析】
根据众数、中位数和平均数及方差的定义逐一判断可得.【详解】A.甲组同学身高的众数是160,此选项正确;B.乙组同学身高的中位数是161,此选项正确;C.甲组同学身高的平均数是161,此选项正确;D.甲组的方差为,乙组的方差为,甲组的方差大,此选项错误.故选D.【点睛】本题考查了众数、中位数和平均数及方差,掌握众数、中位数和平均数及方差的定义和计算公式是解题的关键.3、C【解析】
利用相似三角形的性质即可判断.【详解】设AD=x,AE=y,∵DE∥BC,∴△ADE∽△ABC,∴,∴,∴x=9,y=12,故选:C.【点睛】考查平行线的性质,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.4、B【解析】试题分析:根据平行线分线段成比例可得,然后根据AC=1,CE=6,BD=3,可代入求解DF=1.2.故选B考点:平行线分线段成比例5、B【解析】试题解析:由图象可知,正比函数y=2kx的图象经过二、四象限,∴2k<0,得k<0,∴k−2<0,1−k>0,∴函数y=(k−2)x+1−k图象经过一、二、四象限,故选B.6、A【解析】
由抛物线的开口方向判断a与2的关系,由抛物线与y轴的交点判断c与2的关系,然后根据对称轴判定b与2的关系以及2a+b=2;当x=﹣1时,y=a﹣b+c;然后由图象确定当x取何值时,y>2.【详解】①∵对称轴在y轴右侧,∴a、b异号,∴ab<2,故正确;②∵对称轴∴2a+b=2;故正确;③∵2a+b=2,∴b=﹣2a,∵当x=﹣1时,y=a﹣b+c<2,∴a﹣(﹣2a)+c=3a+c<2,故错误;④根据图示知,当m=1时,有最大值;当m≠1时,有am2+bm+c≤a+b+c,所以a+b≥m(am+b)(m为实数).故正确.⑤如图,当﹣1<x<3时,y不只是大于2.故错误.故选A.【点睛】本题主要考查了二次函数图象与系数的关系,关键是熟练掌握①二次项系数a决定抛物线的开口方向,当a>2时,抛物线向上开口;当a<2时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>2),对称轴在y轴左;当a与b异号时(即ab<2),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点,抛物线与y轴交于(2,c).7、B【解析】
(1)利用待定系数法求出二次函数解析式为y=-x2+x+3,即可判定正确;(2)求得对称轴,即可判定此结论错误;(3)由当x=4和x=-1时对应的函数值相同,即可判定结论正确;(4)当x=3时,二次函数y=ax2+bx+c=3,即可判定正确.【详解】(1)∵x=-1时y=-,x=0时,y=3,x=1时,y=,∴,解得∴abc<0,故正确;(2)∵y=-x2+x+3,∴对称轴为直线x=-=,所以,当x>时,y的值随x值的增大而减小,故错误;(3)∵对称轴为直线x=,∴当x=4和x=-1时对应的函数值相同,∴16a+4b+c<0,故正确;(4)当x=3时,二次函数y=ax2+bx+c=3,∴x=3是方程ax2+(b-1)x+c=0的一个根,故正确;综上所述,结论正确的是(1)(3)(4).故选:B.【点睛】本题考查了二次函数的性质,主要利用了待定系数法求二次函数解析式,二次函数的增减性,二次函数与不等式,根据表中数据求出二次函数解析式是解题的关键.8、C【解析】试题分析:根据根与系数的关系可得出两根的积,即可求得方程的另一根.设m、n是方程x2+kx﹣3=0的两个实数根,且m=x=1;则有:mn=﹣3,即n=﹣3;故选C.【考点】根与系数的关系;一元二次方程的解.9、C【解析】
首先求得AB与正东方向的夹角的度数,即可求解.【详解】根据题意得:∠BAC=(90°﹣70°)+15°+90°=125°,故选:C.【点睛】本题考查了方向角,正确理解方向角的定义是关键.10、B【解析】试题分析:∵AB∥CD,∴∠D=∠1=34°,∵DE⊥CE,∴∠DEC=90°,∴∠DCE=180°﹣90°﹣34°=56°.故选B.考点:平行线的性质.二、填空题(共7小题,每小题3分,满分21分)11、【解析】
先求出扇形弧长,再求出圆锥的底面半径,再根据勾股定理即可出圆锥的高.【详解】圆心角为120°,半径为6cm的扇形的弧长为4cm∴圆锥的底面半径为2,故圆锥的高为=4cm【点睛】此题主要考查圆的弧长及圆锥的底面半径,解题的关键是熟知圆的相关公式.12、【解析】
试题解析:根据题意,得:解得:故答案为【点睛】:一个正数有2个平方根,它们互为相反数.13、288°【解析】
母线长为15cm,高为9cm,由勾股定理可得圆锥的底面半径;由底面周长与扇形的弧长相等求得圆心角.【详解】解:如图所示,在Rt△SOA中,SO=9,SA=15;则:设侧面属开图扇形的国心角度数为n,则由得n=288°故答案为:288°.【点睛】本题利用了勾股定理,弧长公式,圆的周长公式和扇形面积公式求解.14、60°【解析】
先根据垂直的定义,得出∠BAD=60°,再根据平行线的性质,即可得出∠D的度数.【详解】∵DA⊥CE,∴∠DAE=90°,∵∠1=30°,∴∠BAD=60°,又∵AB∥CD,∴∠D=∠BAD=60°,故答案为60°.【点睛】本题主要考查了平行线的性质以及垂线的定义,解题时注意:两直线平行,内错角相等.15、1【解析】试题分析:此题主要考查了多边形的外角与内角,做此类题目,首先求出正多边形的外角度数,再利用外角和定理求出求边数.首先根据求出外角度数,再利用外角和定理求出边数.∵正多边形的一个内角是140°,∴它的外角是:180°-140°=40°,360°÷40°=1.故答案为1.考点:多边形内角与外角.16、1【解析】在△AGF和△ACF中,,∴△AGF≌△ACF,∴AG=AC=4,GF=CF,则BG=AB−AG=6−4=2.又∵BE=CE,∴EF是△BCG的中位线,∴EF=BG=1.故答案是:1.17、-12【解析】过E点作EF⊥OC于F,如图所示:
由条件可知:OE=OA=5,,所以EF=3,OF=4,
则E点坐标为(-4,3)
设反比例函数的解析式是y=,则有k=-4×3=-12.故答案是:-12.三、解答题(共7小题,满分69分)18、(1)1;(2).【解析】
(1)先计算乘方、绝对值、负整数指数幂和零指数幂,再计算乘法,最后计算加减运算可得;(2)先将分子、分母因式分解,再计算乘法,最后计算减法即可得.【详解】(1)原式=8-4+×6+1=8-4+2+1=1.(2)原式===.【点睛】本题主要考查实数和分式的混合运算,解题的关键是掌握绝对值性质、负整数指数幂、零指数幂及分式混合运算顺序和运算法则.19、(1)如图所示见解析;(2)四边形OCED是菱形.理由见解析.【解析】
(1)根据图形平移的性质画出平移后的△DEC即可;
(2)根据图形平移的性质得出AC∥DE,OA=DE,故四边形OCED是平行四边形,再由矩形的性质可知OA=OB,故DE=CE,由此可得出结论.【详解】(1)如图所示;(2)四边形OCED是菱形.理由:∵△DEC由△AOB平移而成,∴AC∥DE,BD∥CE,OA=DE,OB=CE,∴四边形OCED是平行四边形.∵四边形ABCD是矩形,∴OA=OB,∴DE=CE,∴四边形OCED是菱形.【点睛】本题考查了作图与矩形的性质,解题的关键是熟练的掌握矩形的性质与根据题意作图.20、缆车垂直上升了186m.【解析】
在Rt中,米,在Rt中,即可求出缆车从点A到点D垂直上升的距离.【详解】解:在Rt中,斜边AB=200米,∠α=16°,(m),在Rt中,斜边BD=200米,∠β=42°,因此缆车垂直上升的距离应该是BC+DF=186(米).答:缆车垂直上升了186米.【点睛】本题考查了解直角三角形的应用-坡度坡角问题,锐角三角函数的定义,结合图形理解题意是解决问题的关键.21、(1)作图见解析;(2)证明书见解析.【解析】
(1)以点N为圆心,以MQ长度为半径画弧,以点M为圆心,以NQ长度为半径画弧,两弧交于一点F,则△MNF为所画三角形.(2)延长DA至E,使得AE=CB,连结CE.证明△EAC≌△BCA,得:∠B=∠E,AB=CE,根据等量代换可以求得答案.【详解】解:(1)如图1,以N为圆心,以MQ为半径画圆弧;以M为圆心,以NQ为半径画圆弧;两圆弧的交点即为所求.(2)如图,延长DA至E,使得AE=CB,连结CE.∵∠ACB+∠CAD=180°,∠DACDAC+∠EAC=180°,∴∠BACBCA=∠EAC.在△EAC和△BAC中,AE=CE,AC=CA,∠EAC=∠BCN,∴△AECEAC≌△BCA(SAS).∴∠B=∠E,AB=CE.∵∠B=∠D,∴∠D=∠E.∴CD=CE,∴CD=AB.考点:1.尺规作图;2.全等三角形的判定和性质.22、1.5千米【解析】
先根据相似三角形的判定得出△ABC∽△AMN,再利用相似三角形的性质解答即可【详解】在△ABC与△AMN中,,,∴,∵∠A=∠A,∴△ABC∽△ANM,∴,即,解得MN=1.5(千米),因此,M、N两点之间的直线距离是1.5千米.【点睛】此题考查相似三角形的应用,解题关键在于掌握运算法则23、(1)甲种型号手机每部进价为1000元,乙种型号手机每部进价为800元;(2)共有四种方案;(3)当m=80时,w始终等于8000,取值与a无关【解析】
(1)设甲种型号手机每部进价为x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 5534-2024动植物油脂皂化值的测定
- 2024年度建筑防水工程设计与施工一体化合同
- 2024年度融资租赁合同租金计算方式与支付期限
- 2024年度建筑项目施工期调整合同2篇
- 2024年度环保设备研发制造合同
- 钢结构施工全过程课件
- 2024年度战略合作合同及商业机密保护协议
- 2024年度农田水利建设铲车租赁合同
- 2024年度工程建设项目贷款担保合同
- 2024年度网络安全服务承包转让合同
- 马铃薯栽培技术课件
- 砌体结构承载力计算
- 北京大学数字图像处理(冈萨雷斯)(课堂PPT)
- 4微笑着承受一切
- 五年级英语whatwouldyoulike教案
- 台钻日常维护保养点检记录表
- 高考物理试题库-专题3.32-霍尔效应(解析版)
- xx年度中层干部述职指标及评分表
- 初二班家长会课件
- 大学体育课程教学计划(舞龙) (2)
- 江苏省示范性县级教师发展中心建设标准
评论
0/150
提交评论