下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
平行线分线段成比例教学任务分析教学目标1.了解“平行线分线段成比例”基本事实;2.经历横格本上画图验证、白纸上画图验证、图形计算器操作验证等验证过程,体会从特殊到一般的研究方法;3.发展严谨、批判的思维,进一步感受数学的公理化特征,提高学习兴趣.教学重点探索并验证“平行线分线段成比例”基本事实.教学难点从特殊到一般验证“平行线分线段成比例”基本事实.教学用具单线横格纸,白纸,铅笔,三角板,带刻度的直尺,图形计算器.教学过程设计问题与情境师生行为设计意图【准备活动】观察手中的横格纸.师生共同发现:页面上每两条横线是平行的,每两条横线间的距离是相等的.今天我们来探讨在一组平行线的基础上我们能发现什么结论.明确条件,为后续发现基本事实做好铺垫.【活动1】(1)任意选取横格纸上的三条横线,画出三条平行线,分别记为、、.(2)任意画一条直线与这三条平行线相交.(3)分别度量所截线段的长,然后计算其中两条线段长的比,做好记录.(4)猜想:比值与什么因素有关?交流:每个人画出的平行线有什么不同?直线被这三条平行线所截,得到几条线段?分别是被哪两条平行线截得的?每个人计算的比值相同吗?你认为比值与什么因素有关?(5)再画一条直线与这三条平行线相交.度量被这三条平行线所截线段的长,计算其中两条线段长的比.问题:你有什么发现?这说明什么?你能用文字语言归纳这个发现吗?这个结论尚不具有一般性,它是我们在横格纸上发现的.如果将横格纸换成白纸,结论还成立吗?教师展示活动要求,学生画图、展示并交流.(板书示意图)平行线间的距离(格数)可能不同.图中共出现3条线段,每条线段分别是被其中两条平行线截得.每个人计算的比值可能不同,猜想比值与平行线间的距离有关.学生继续画图.师生共同总结:说明对应线段长的比相等,都等于平行线间的距离.师生共同归纳:两条直线被一组平行线所截,所得的对应线段成比例.在横格本的条件下验证平行线分线段成比例的基本事实.【活动2】(1)在所给的白纸上任意画三条平行线,分别记为、、.(2)任意画两条直线、使它们被这三条平行线所截.(3)度量所截线段的长,计算对应线段的比,做好记录.(4)与同学交流你发现的结论.学生动手实验,教师巡视指导,展示部分学生的数据.学生通过动手实验获得经验,同时由于测量误差导致对结论的真实性产生质疑.【活动3】用图形计算器拖动其中一些点和直线,以改变其位置,观察数据的变化.与同学交流你发现的结论.问题:平行线间的距离会不会是无理数呢?于是我们在实数范围内得到“平行线分线段成比例”这个基本事实,也即平行线分线段成比例公理.你还能得到哪些比例式?学生动手实验,教师巡视指导.教师展示部分学生的界面及数据.学生发现:无论这组平行线或两条被截直线如何移动,等这些等式是始终成立的.教师引导:我们知道线段长为无理数的情况是存在的,但我们无法通过度量得到,在平行线间的距离由1变化到2的过程中,经过了、等无理数,只是图形计算器在那时显示的数值是它们的近似值;但这一连续的过程让我们可以想象,这个结论在无理数的情况下也是成立的.平行线分线段成比例:两条直线被一组平行线所截,所得的对应线段成比例.等学生通过动手实验和图形的动态变化感知:结论在实数范围内成立,并承认这个基本事实.【练习】已知:如图,AD∥BE∥CF,AB=3,BC=6,DE=2,则DF=.教师多媒体展示,学生作答.对基本事实及其推论进行简单应用.【思考】已知:如图,在△ABC中,DE∥BC,且分别与边AB、AC(或两边的延长线)交于D、E.你能说明以下两个图与“平行线分线段成比例”的基本图形的关系吗?你能得到对应的比例关系吗?学生用图形计算器操作,并尝试回答.教师点评:当两条被截直线相交于三条平行线的外侧直线上时得到左图;当两条被截直线相交于三条平行线的中间这条直线上时得到右图.我们用刚刚得到的基本事实作为依据,在没有依靠任何其他定理的基础上得到了这个结论,因此我们把它称为这个基本事实的推论.推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.∵在△ABC中,DE∥BC∴同理……这个结论在我们后面学习相似三角形的判定时将起到重要的作用.验证基本事实的推论——平行线分三角形两边(延长线)成比例.【小结】1.本节课我们分别进行了哪些活动?这些活动分别得到了什么结论?2.平行线分线段成比例这一基本事实的内容是什么?3.本节课的活动过程体现了什么样的研究方法?学生自由发言.教师与学生共同回顾本节课所学的内容,总结研究问题的方法,体会几何的公理化特征.板书设计投影平行线分线段成比例等基本事实在现行义务教育《数学课程标准》第三学段中,平行线分线段成比例是九个基本事实之一,不同于其他八个基本事实,该基本事实对于初学者并不那么显而易见。“几条线段成比例”很难凭直观感受到,基于测量计算判断线段是否成比例又往往受到测量精度、误差等影响。该教学设计从以下三方面帮助学生建立对这个基本事实正确认识,在数学活动中培养学生良好的数学学习习惯。设计严谨的探究流程对基本事实的探究过程分为以下几个步骤:活动1:引入横格背景,归纳初始结论;活动2:打破条件限制,发现对应线段;活动3:深入探索验证,激发认知冲突;活动4:利用信息技术,达成结论认同;活动5:归纳活动经验,形成基本事实.从横格纸到白纸、从一条直线被一组平行线所截到两条直线被一组平行线所截、从手工测量计算到图形计算器测量计算、从验证有理数比值到感悟无理数比值,完整细致的探索流程充分满足了学生验证猜想的学习需求,让学生感受到猜想的真实可信,将猜想作为“事实”接受下来,为相似全章定理的证明打好逻辑基础。恰当运用技术辅助学生探究在本节课开始的探究中,教师安排学生动手画图、测量、计算。进行到活动3,度量并计算两条直线被一组手画的平行线截得的对应线段比值,很多同学都得到了比值近似的结论,很难通过测量、计算直接确认比值相等。教师恰当地设计了学生使用图形计算器探究的环节,技术的使用提高了测量的精度,同时让实验的结论从特殊到一般自然发展。学生亲自操作图形计算器,按照自己的需要个性化地进行任意次数的试验验证,让结论在学生心中更加真实可信。提炼探究方法关注数学素养本节课的教学目标不仅仅局限于掌握知
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度年福建省高校教师资格证之高等教育学题库练习试卷B卷附答案
- 2024年度山西省高校教师资格证之高等教育法规综合练习试卷B卷附答案
- 2023年眼镜类产品及其零部件和眼镜盒资金需求报告
- 第41章 氨基甙类抗生素课件
- 社区消防安全集中除患攻坚大整治工作总结
- 运动会入场式方案
- 2024年拍卖交易协议模板集锦
- 2024年设计师服务结束协议模板
- 2024年度防洪排水项目施工协议
- 2024年劳动协议格式与条款汇编
- 《2023级学生手册》奖、惩资助、文明部分学习通超星期末考试答案章节答案2024年
- 第15课 两次鸦片战争 教学设计 高中历史统编版(2019)必修中外历史纲要上册+
- 期末知识点复习 2024-2025学年统编版语文九年级上册
- 《江苏省一年级上学期数学第二单元试卷》
- 上海市普通高中学业水平合格性考试地理基础知识点复习提纲
- 废旧风机叶片循环利用项目可行性研究报告-积极稳妥推进碳达峰碳中和
- 中医脑病科缺血性中风(脑梗死恢复期)中医诊疗方案临床疗效分析总结
- 中国人工智能系列白皮书一元宇宙技术(2024 版)
- 《甘肃省中医康复中心建设标准(2021版)》
- 高中英语外刊-小猫钓鱼50篇
- PowerPoint培训教程课件
评论
0/150
提交评论