版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题35分)一、单选题(5小题,每小题3分,共计15分)1、长度分别为2,3,3,4的四根细木棒首尾相连,围成一个三角形(木棒允许连接,但不允许折断),得到的三角形的最长边长为()A.4 B.5 C.6 D.72、作平分线的作图过程如下:作法:(1)在和上分别截取、,使.(2)分别以,为圆心,大于的长为半径作弧,两弧交于点.(3)作射线,则就是的平分线.用下面的三角形全等的判定解释作图原理,最为恰当的是(
)A. B. C. D.3、如图,OB平分∠AOC,D、E、F分别是射线OA、射线OB、射线OC上的点,D、E、F与O点都不重合,连接ED、EF若添加下列条件中的某一个.就能使DOEFOE,你认为要添加的那个条件是(
)A.OD=OE B.OE=OF C.∠ODE=∠OED D.∠ODE=∠OFE4、如图,在△ABC中,AC=5,AB=7,AD平分∠BAC,DE⊥AC,DE=2,则△ABC的面积为()A.14 B.12 C.10 D.75、如图:∠B=∠C=90°,E是BC的中点,DE平分∠ADC,则下列说法正确的有几个(
)(1)AE平分∠DAB;(2)△EBA≌△DCE;(3)AB+CD=AD;
(4)AE⊥DE.(5)DE=AEA.2个 B.3个 C.4个 D.5······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······1、如图,在中,,,点E在的延长线上,的角平分线与的角平分线相交于点D,连接,下列结论中正确的是(
)A. B. C. D.2、若将一副三角板按如图所示的方式放置,则下列结论正确的是(
)A.∠1=∠2 B.如果∠2=30°,则有AC∥DEC.如果∠2=30°,则有BC∥AD D.如果∠2=30°,必有∠4=∠C3、下列不是真命题的是()A.如果a>b,a>c,那么b=cB.相等的角是对顶角C.一个角的补角大于这个角D.一个三角形中至少有两个锐角4、如图,下列结论正确的是(
)A. B.C. D.5、下列多边形中,外角和为360°的有()A.三角形 B.四边形 C.六边形 D.十八边形第Ⅱ卷(非选择题65分)三、填空题(5小题,每小题5分,共计25分)1、有一张直角三角形纸片,记作△ABC,其中∠B=90°.按如图方式剪去它的一个角(虚线部分),在剩下的四边形ADEC中,若∠1=165°,则∠2的度数为_____°.2、如图,中,点,分别在,上,与交于点,若,,,则的面积______.······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······3、如图,图中以BC为边的三角形的个数为_____.4、如图,△ABC中,AB=AC,D、E分别在CA、BA的延长线上,连接BD、CE,且∠D+∠E=180°,若BD=6,则CE的长为__.5、已知a,b,c是△ABC的三边长,a,b满足|a﹣7|+(b﹣1)2=0,c为奇数,则c=_____.四、解答题(5小题,每小题8分,共计40分)1、如图1,点P、Q分别是边长为4cm的等边三角形ABC的边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s.(1)连接AQ、CP交于点M,则在P,Q运动的过程中,证明≌;(2)会发生变化吗?若变化,则说明理由,若不变,则求出它的度数;(3)P、Q运动几秒时,是直角三角形?(4)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则变化吗?若变化说明理由,若不变,则求出它的度数。2、如图,G为BC的中点,且DG⊥BC,DE⊥AB于E,DF⊥AC于F,BE=CF.(1)求证:AD是∠BAC的平分线;(2)如果AB=8,AC=6,求AE的长.3、如图,AB=AD=BC=DC,∠C=∠D=∠ABE=∠BAD=90°,点E、F分别在边BC、CD上,∠EAF=45°,过点A作∠GAB=∠FAD,且点G在CB的延长线上.(1)△GAB与△FAD全等吗?为什么?(2)若DF=2,BE=3,求EF的长.······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······4、如图,点E在CD上,BC与AE交于点F,AB=CB,BE=BD,∠1=∠2.(1)求证:;(2)证明:∠1=∠3.5、如图,已知射线AB与直线CD交于点O,OF平分∠BOC,OG⊥OF于O,AE∥OF,且∠A=30°.(1)求∠DOF的度数;(2)试说明OD平分∠AOG.-参考答案-一、单选题1、B【解析】【分析】利用三角形的三边关系列举出所围成三角形的不同情况,通过比较得到结论.【详解】①长度分别为5、3、4,能构成三角形,且最长边为5;②长度分别为2、6、4,不能构成三角形;③长度分别为2、7、3,不能构成三角形;④长度分别为6、3、3,不能构成三角形;综上所述,得到三角形的最长边长为5.故选:B.【考点】此题考查构成三角形的条件,三角形的三边关系,解题中运用不同情形进行讨论的方法,注意避免遗漏构成的情况.2、A【解析】【分析】根据作图过程可得OD=OE,CE=CD,根据OC为公共边,利用SSS即可证明△OCE≌△OCD,即可得答案.【详解】∵分别以,为圆心,大于的长为半径作弧,两弧交于点;∴CE=CD,······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······∴△OCE≌△OCD(SSS),故选:A.【考点】本题考查全等三角形的判定,正确找出相等的线段并熟练掌握全等三角形的判定定理是解题关键.3、D【解析】【分析】根据OB平分∠AOC得∠AOB=∠BOC,又因为OE是公共边,根据全等三角形的判断即可得出结果.【详解】解:∵OB平分∠AOC∴∠AOB=∠BOC当△DOE≌△FOE时,可得以下结论:OD=OF,DE=EF,∠ODE=∠OFE,∠OED=∠OEF.A答案中OD与OE不是△DOE≌△FOE的对应边,A不正确;B答案中OE与OF不是△DOE≌△FOE的对应边,B不正确;C答案中,∠ODE与∠OED不是△DOE≌△FOE的对应角,C不正确;D答案中,若∠ODE=∠OFE,在△DOE和△FOE中,∴△DOE≌△FOE(AAS)∴D答案正确.故选:D.【考点】本题考查三角形全等的判断,理解全等图形中边和角的对应关系是解题的关键.4、B【解析】【分析】过点D作DF⊥AB于点F,利用角平分线的性质得出,将的面积表示为面积之和,分别以AB为底,DF为高,AC为底,DE为高,计算面积即可求得.【详解】过点D作DF⊥AB于点F,∵AD平分∠BAC,DE⊥AC,DF⊥AB,∴,∴,······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······【考点】本题考查角平分线的性质,角平分线上的点到角两边的距离相等,熟记性质作出辅助线是解题关键.5、B【解析】【分析】过点E作EF⊥AD垂足为点F,证明△DEF≌△DEC(AAS);得出CE=EF,DC=DF,∠CED=∠FED,证明Rt△AFE≌Rt△ABE(HL);得出AF=AB,∠FAE=∠BAE,∠AEF=∠AEB,即可得出答案.【详解】解:如图,过点E作EF⊥AD,垂足为点F,可得∠DFE=90°,则∠DFE=∠C,∵DE平分∠ADC,∴∠FDE=∠CDE,在△DCE和△DFE中,,∴△DEF≌△DEC(AAS);∴CE=EF,DC=DF,∠CED=∠FED,∵E是BC的中点,∴CE=EB,∴EF=EB,在Rt△ABE和Rt△AFE中,,∴Rt△AFE≌Rt△ABE(HL);∴AF=AB,∠FAE=∠BAE,∠AEF=∠AEB,∴AE平分∠DAB,故结论(1)正确,则AD=AF+DF=AB+CD,故结论(3)正确;可得∠AED=∠FED+AEF=∠FEC+∠BEF=90°,即AE⊥DE故结论(4)正确.∵AB≠CD,AE≠DE,(5)错误,∴△EBA≌△DCE不可能成立,故结论(2)错误.综上所知正确的结论有3个.故答案为:B.【考点】本题考查全等三角形的判定与性质、平行线的判定等内容,作出辅助线是解题的关键.二、多选题1、ACD【解析】【分析】根据三角形的内角和定理列式计算即可求出∠BAC=70°,再根据角平分线的定义求出∠DBC,然后利······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······用三角形的外角性质求出∠DOC,再根据邻补角可得∠ACE=120°,由角平分线的定义求出∠ACD=60°,再利用三角形的内角和定理列式计算即可∠BDC,根据······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······【详解】解:∵∠ABC=50°,∠ACB=60°,∴∠BAC=180°-∠ABC-∠ACB=180°-50°-60°=70°,故A选项正确,∵BD平分∠ABC,∴∠DBC=∠ABC=×50°=25°,∵∠DOC是△OBC的外角,∴∠DOC=∠OBC+∠ACB=25°+60°=85°,故B选项不正确;∵∠ACB=60°,∴∠ACE=180°-60°=120°,∵CD平分∠ACE,∴∠ACD=∠ACE=60°,∴∠BDC=180°-85°-60°=35°,故C选项正确;∵BD平分∠ABC,∴点D到直线BA和BC的距离相等,∵CD平分∠ACE∴点D到直线BC和AC的距离相等,∴点D到直线BA和AC的距离相等,∴AD平分∠BAC的邻补角,∴∠DAC=(180°-70°)=55°,故D选项正确.故选ACD.【考点】本题主要考查了角平分线的定义,性质和判定,三角形的内角和定理和三角形的外角性质,解决本题的关键是要熟练掌握角平分线的定义,性质和判定.2、BD【解析】【分析】根据两种三角形的各角的度数,利用平行线的判定与性质结合已知条件对各个结论逐一验证,即可得出答案.【详解】解:∵∠CAB=∠DAE=90°,∴∠1=∠3,故A错误.∵∠2=30°,∴∠1=∠3=60°∴∠CAD=90°+60°=150°,∴∠D+∠CAD=180°,∴AC∥DE,故B正确,∵∠2=30°,∴∠1=∠3=60°,∵,∴,不平行,故C错误,······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······∴∠1=∠3=60°,由三角形的内角和定理可得:∴∠4=45°,∴,故D正确.故选:B,D【考点】此题考查平行线的判断,三角形的内角和定理的应用,解题关键在于根据三角形的内角和来进行计算.3、ABC【解析】【分析】根据不等式的性质、对顶角的性质、三角形和补角的性质进行判断即可.【详解】解:A、如果a>b,a>c,不能判断b,c的大小,原命题是假命题;B、相等的角不一定是对顶角,原命题是假命题;C、一个角的补角不一定大于这个角,原命题是假命题;D、一个三角形中至少有两个锐角,原命题是真命题;故选:ABC.【考点】本题考查了命题与定理的知识,解题的关键是了解不等式的性质、对顶角的性质、三角形和补角的性质,属于基础知识,难度不大.4、AD【解析】【分析】根据三角形的一个外角等于和它不相邻的两个内角的和作答.【详解】A、∵∠1是△ABC的一个外角,∴∠1=∠2+∠3,正确,符合题意;B、∵∠1是△ABC的一个外角,∴∠1=∠2+∠3,选项错误,不符合题意;C、∵∠1是△ABC的一个外角,∴∠1=∠2+∠3,又∵∠2是△CDE的一个外角,∴∠2=∠4+∠5,∴,选项错误,不符合题意;D、∵∠2是△CDE的一个外角,∴∠2=∠4+∠5,正确,符合题意.故选:AD.【考点】本题主要考查了三角形的外角性质,解题关键是掌握一个外角等于和它不相邻的两个内角的和.······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······【解析】【分析】多边形的外角和为360°,与边数无关,即可得到答案.【详解】解:多边形的外角和为360°,故答案为:ABCD.【考点】本题考查多边形的外角和,掌握多边形的外角和为360°且与边数无关是解题的关键.三、填空题1、105°.【解析】【分析】根据三角形内角和定理结合∠B的度数即可得出∠BDE+∠BED的度数,再根据∠BDE与∠2互补、∠BED与∠1互补,即可求出∠1+∠2的度数,代入∠1=165°即可得出结论.【详解】∵∠B=90°,∴∠BDE+∠BED=180°-∠B=90°,又∵∠BDE+∠2=180°,∠BED+∠1=180°,∴∠1+∠2=360°-(∠BDE+∠BED)=270°.∵∠1=165°,∴∠2=105°.故答案为:105.【考点】本题考查了三角形内角和定理,根据三角形内角和定理求出∠BDE+∠BED的度数是解题的关键.2、7.5.【解析】【分析】观察三角形之间的关系,利用等高或同高的两个三角形的面积之比等于底之比,利用已知比例关系进行转化求解.【详解】如下图所示,连接,∵,,,∴,∴,,∴,,设,,······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······,由,可得,,解得,∴,,.故答案为:7.5.【考点】本题考查的是等高同高三角形,应用等高或同高的两个三角形的面积之比等于底之比进行求解是本题的关键.3、4.【解析】【分析】根据三角形的定义即可得到结论.【详解】解:∵以BC为公共边的三角形有△BCD,△BCE,△BCF,△ABC,∴以BC为公共边的三角形的个数是4个.故答案为:4.【考点】此题考查了学生对三角形的认识.注意要审清题意,按题目要求解题.4、6【解析】【分析】在AD上截取AF=AE,连接BF,易得△ABF≌△ACE,根据全等三角形的性质可得∠BFA=∠E,CE=BF,则有∠D=∠DFB,然后根据等腰三角形的性质可求解.【详解】解:在AD上截取AF=AE,连接BF,如图所示:AB=AC,∠FAB=∠EAC,,BF=EC,∠BFA=∠E,∠D+∠E=180°,∠BFA+∠DFB=180°,∠DFB=∠D,BF=BD,BD=6,CE=6.故答案为6.【考点】······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······5、7【解析】【分析】根据非负数的性质列式求出a、b的值,再根据三角形的任意两边之和大于第三边,两边之差小于第三边求出c的取值范围,再根据c是奇数求出c的值.【详解】∵a,b满足|a﹣7|+(b﹣1)2=0,∴a﹣7=0,b﹣1=0,解得a=7,b=1,∵7﹣1=6,7+1=8,∴又∵c为奇数,∴c=7,故答案为7.【考点】本题考查非负数的性质:偶次方,解题的关键是明确题意,明确三角形三边的关系.四、解答题1、(1)见解析;(2)∠CMQ=60°,不变;(3)当第秒或第秒时,△PBQ为直角三角形;(4)∠CMQ=120°,不变.【解析】【分析】(1)利用SAS可证全等;(2)先证△ABQ≌△CAP,得出∠BAQ=∠ACP,通过角度转化,可得出∠CMQ=60°;(3)存在2种情况,一种是∠PQB=90°,另一种是∠BPQ=90°,分别根据直角三角形边直角的关系可求得t的值;(4)先证△PBC≌△ACQ,从而得出∠BPC=∠MQC,然后利用角度转化可得出∠CMQ=120°.【详解】(1)证明:在等边三角形ABC中,AB=AC,∠B=∠CAP=60°又由题中“点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s.”可知:AP=BQ∴≌;(2)∠CMQ=60°不变∵等边三角形中,AB=AC,∠B=∠CAP=60°又由条件得AP=BQ,∴△ABQ≌△CAP(SAS),∴∠BAQ=∠ACP,∴∠CMQ=∠ACP+∠CAM=∠BAQ+∠CAM=∠BAC=60°;(3)设时间为t,则AP=BQ=t,PB=4-t,①当∠PQB=90°时,∵∠B=60°,∴PB=2BQ,得4-t=2t,t=;②当∠BPQ=90°时,∵∠B=60°,······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······∴当第秒或第秒时,△PBQ为直角三角形;(4)∠CMQ=120°不变,∵在等边三角形中,AB=AC,∠B=∠CAP=60°,∴∠PBC=∠ACQ=120°,又由条件得BP=CQ,∴△PBC≌△ACQ(SAS),∴∠BPC=∠MQC,又∵∠PCB=∠MCQ,∴∠CMQ=∠PBC=180°-60°=120°.【考点】本题考查动点问题中三角形的全等,解题关键是找出图形中的全等三角形,利用全等三角形的性质进行角度转化,得出需要的结论.2、(1)见解析;(2)7.【解析】【分析】(1)因为G为BC的中点,且DG⊥BC,则DG是线段BC的垂直平分线,考虑连接DB、DC,利用线段的垂直平分线的性质,又因为DE⊥AB,DF⊥AC,可通过DE=DF说明AD是∠BAC的平分线;(2)先通过△AED与△ADF的全等关系,说明AE与AF的关系,利用线段的和差关系,通过线段的加减求出AE的长.【详解】(1)连接BD、DC∵DG⊥BC,G为BC的中点,∴BD=CD,∵DG⊥BC,DE⊥AB∴∠BED=∠CFD,在Rt△DBE和Rt△DFC中,∴△DBE≌△DFC∴DE=DF,∴∠BAD=∠FAD∴AD是∠BAC的平分线;(2)∵DE=DF,∠BAD=∠FAD,AD=AD∴△AED≌△ADF,∴AE=AF∵AB=AE+BE,AC=AF-CF,∴AB+AC=AE+AF,∵AB=8,AC=6,∴8+6=2AE,∴AE=7.······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线····
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度楼层套房租赁合同书(含私人厨师服务)4篇
- 2025版企业安全保卫力量派遣合同范本4篇
- 2025版智能烘焙面包砖设备租赁合同范本4篇
- 2025年度个人股权赠与协议(股权捐赠)4篇
- 二零二五年度苗木种植与林业产业结构调整合同样本4篇
- 2024陶瓷厂劳务外派合同标准模板3篇
- 2025版智能家居瓷砖装饰工程承包合同文本2篇
- 二零二五版模具行业知识产权保护合同4篇
- 2025彩钢瓦建筑构件采购合同标准范本3篇
- 2025版新能源储能系统关键零配件采购与集成服务合同4篇
- 加强教师队伍建设教师领域学习二十届三中全会精神专题课
- 2024-2025学年人教版数学七年级上册期末复习卷(含答案)
- 四年级数学上册人教版24秋《小学学霸单元期末标准卷》考前专项冲刺训练
- 2025年慢性阻塞性肺疾病全球创议GOLD指南修订解读课件
- (完整版)减数分裂课件
- 五年级数学(小数乘除法)计算题专项练习及答案
- 小学数学知识结构化教学
- 2022年睾丸肿瘤诊断治疗指南
- 被执行人给法院执行局写申请范本
- 饭店管理基础知识(第三版)中职PPT完整全套教学课件
- 2023年重庆市中考物理A卷试卷【含答案】
评论
0/150
提交评论