版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省济南市市中学区2024年中考一模数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列计算正确的是()A.+= B.﹣= C.×=6 D.=42.下列交通标志是中心对称图形的为()A. B. C. D.3.圆锥的底面半径为2,母线长为4,则它的侧面积为()A.8π B.16π
C.4π D.4π4.左下图是一些完全相同的小正方体搭成的几何体的三视图.这个几何体只能是()A. B. C. D.5.小明将某圆锥形的冰淇淋纸套沿它的一条母线展开若不考虑接缝,它是一个半径为12cm,圆心角为的扇形,则A.圆锥形冰淇淋纸套的底面半径为4cmB.圆锥形冰淇淋纸套的底面半径为6cmC.圆锥形冰淇淋纸套的高为D.圆锥形冰淇淋纸套的高为6.如图,D是等边△ABC边AD上的一点,且AD:DB=1:2,现将△ABC折叠,使点C与D重合,折痕为EF,点E、F分别在AC、BC上,则CE:CF=()A. B. C. D.7.某一超市在“五•一”期间开展有奖促销活动,每买100元商品可参加抽奖一次,中奖的概率为.小张这期间在该超市买商品获得了三次抽奖机会,则小张()A.能中奖一次 B.能中奖两次C.至少能中奖一次 D.中奖次数不能确定8.函数y=中,自变量x的取值范围是()A.x>3 B.x<3 C.x=3 D.x≠39.若正多边形的一个内角是150°,则该正多边形的边数是()A.6B.12C.16D.1810.若关于,的二元一次方程组的解也是二元一次方程的解,则的值为A. B. C. D.11.如图,已知函数与的图象在第二象限交于点,点在的图象上,且点B在以O点为圆心,OA为半径的上,则k的值为A. B. C. D.12.如图,△ABC的面积为8cm2,AP垂直∠B的平分线BP于P,则△PBC的面积为(
)A.2cm2
B.3cm2
C.4cm2
D.5cm2二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若a+b=5,ab=3,则a2+b2=_____.14.若数据2、3、5、3、8的众数是a,则中位数是b,则a﹣b等于_____.15.如图是某商品的标志图案,AC与BD是⊙O的两条直径,首尾顺次连接点A、B、C、D,得到四边形ABCD,若AC=10cm,∠BAC=36°,则图中阴影部分的面积为_____.16.若2a﹣b=5,a﹣2b=4,则a﹣b的值为________.17.如图所示,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠AED的正切值等于__________.18.如图AB是直径,C、D、E为圆周上的点,则______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)武汉二中广雅中学为了进一步改进本校九年级数学教学,提高学生学习数学的兴趣.校教务处在九年级所有班级中,每班随机抽取了6名学生,并对他们的数学学习情况进行了问卷调查:我们从所调查的题目中,特别把学生对数学学习喜欢程度的回答(喜欢程度分为:“非常喜欢”、“比较喜欢”、“不太喜欢”、“很不喜欢”,针对这个题目,问卷时要求每位被调查的学生必须从中选一项且只能选一项)结果进行了统计.现将统计结果绘制成如下两幅不完整的统计图.请你根据以上提供的信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)所抽取学生对数学学习喜欢程度的众数是,图②中所在扇形对应的圆心角是;(3)若该校九年级共有960名学生,请你估算该年级学生中对数学学习“不太喜欢”的有多少人?20.(6分)某数学教师为了解所教班级学生完成数学课前预习的具体情况,对该班部分学生进行了一学期的跟踪调查,将调查结果分为四类并给出相应分数,A:很好,95分;B:较好75分;C:一般,60分;D:较差,30分.并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(Ⅰ)该教师调查的总人数为,图②中的m值为;(Ⅱ)求样本中分数值的平均数、众数和中位数.21.(6分)如图,△ABC中,CD是边AB上的高,且.求证:△ACD∽△CBD;求∠ACB的大小.22.(8分)某小学为了了解学生每天完成家庭作业所用时间的情况,从每班抽取相同数量的学生进行调查,并将所得数据进行整理,制成条形统计图和扇形统计图如下:补全条形统计图;求扇形统计图扇形D的圆心角的度数;若该中学有2000名学生,请估计其中有多少名学生能在1.5小时内完成家庭作业?23.(8分)已知抛物线过点,,求抛物线的解析式,并求出抛物线的顶点坐标.24.(10分)如图,已知在梯形ABCD中,,P是线段BC上一点,以P为圆心,PA为半径的与射线AD的另一个交点为Q,射线PQ与射线CD相交于点E,设.(1)求证:;(2)如果点Q在线段AD上(与点A、D不重合),设的面积为y,求y关于x的函数关系式,并写出定义域;(3)如果与相似,求BP的长.25.(10分)已知BD平分∠ABF,且交AE于点D.(1)求作:∠BAE的平分线AP(要求:尺规作图,保留作图痕迹,不写作法);(2)设AP交BD于点O,交BF于点C,连接CD,当AC⊥BD时,求证:四边形ABCD是菱形.26.(12分)如图,在平面直角坐标系中,函数的图象与直线交于点A(3,m).求k、m的值;已知点P(n,n)(n>0),过点P作平行于轴的直线,交直线y=x-2于点M,过点P作平行于y轴的直线,交函数的图象于点N.①当n=1时,判断线段PM与PN的数量关系,并说明理由;②若PN≥PM,结合函数的图象,直接写出n的取值范围.27.(12分)如图,▱ABCD中,点E,F分别是BC和AD边上的点,AE垂直平分BF,交BF于点P,连接EF,PD.求证:平行四边形ABEF是菱形;若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、B【解析】
根据同类二次根式才能合并可对A进行判断;根据二次根式的乘法对B进行判断;先把化为最简二次根式,然后进行合并,即可对C进行判断;根据二次根式的除法对D进行判断.【详解】解:A、与不能合并,所以A选项不正确;B、-=2−=,所以B选项正确;C、×=,所以C选项不正确;D、=÷=2÷=2,所以D选项不正确.故选B.【点睛】此题考查二次根式的混合运算,注意先化简,再进一步利用计算公式和计算方法计算.2、C【解析】
根据中心对称图形的定义即可解答.【详解】解:A、属于轴对称图形,不是中心对称的图形,不合题意;
B、是中心对称的图形,但不是交通标志,不符合题意;
C、属于轴对称图形,属于中心对称的图形,符合题意;
D、不是中心对称的图形,不合题意.
故选C.【点睛】本题考查中心对称图形的定义:绕对称中心旋转180度后所得的图形与原图形完全重合.3、A【解析】
解:底面半径为2,底面周长=4π,侧面积=×4π×4=8π,故选A.4、A【解析】试题分析:根据几何体的主视图可判断C不合题意;根据左视图可得B、D不合题意,因此选项A正确,故选A.考点:几何体的三视图5、C【解析】
根据圆锥的底面周长等于侧面展开图的扇形弧长,列出方程求出圆锥的底面半径,再利用勾股定理求出圆锥的高.【详解】解:半径为12cm,圆心角为的扇形弧长是:,
设圆锥的底面半径是rcm,
则,
解得:.
即这个圆锥形冰淇淋纸套的底面半径是2cm.
圆锥形冰淇淋纸套的高为.
故选:C.【点睛】本题综合考查有关扇形和圆锥的相关计算解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:圆锥的母线长等于侧面展开图的扇形半径;圆锥的底面周长等于侧面展开图的扇形弧长正确对这两个关系的记忆是解题的关键.6、B【解析】
解:由折叠的性质可得,∠EDF=∠C=60º,CE=DE,CF=DF再由∠BDF+∠ADE=∠BDF+∠BFD=120º可得∠ADE=∠BFD,又因∠A=∠B=60º,根据两角对应相等的两三角形相似可得△AED∽△BDF所以,设AD=a,BD=2a,AB=BC=CA=3a,再设CE==DE=x,CF==DF=y,则AE=3a-x,BF=3a-y,所以整理可得ay=3ax-xy,2ax=3ay-xy,即xy=3ax-ay①,xy=3ay-2ax②;把①代入②可得3ax-ay=3ay-2ax,所以5ax=4ay,,即故选B.【点睛】本题考查相似三角形的判定及性质.7、D【解析】
由于中奖概率为,说明此事件为随机事件,即可能发生,也可能不发生.【详解】解:根据随机事件的定义判定,中奖次数不能确定故选D.【点睛】解答此题要明确概率和事件的关系:,为不可能事件;为必然事件;为随机事件.8、D【解析】由题意得,x﹣1≠0,解得x≠1.故选D.9、B【解析】设多边形的边数为n,则有(n-2)×180°=n×150°,解得:n=12,故选B.10、B【解析】
将k看做已知数求出用k表示的x与y,代入2x+3y=6中计算即可得到k的值.【详解】解:,①②得:,即,将代入①得:,即,将,代入得:,解得:.故选:.【点睛】此题考查了二元一次方程组的解,以及二元一次方程的解,方程的解即为能使方程左右两边成立的未知数的值.11、A【解析】
由题意,因为与反比例函数都是关于直线对称,推出A与B关于直线对称,推出,可得,求出m即可解决问题;【详解】函数与的图象在第二象限交于点,点与反比例函数都是关于直线对称,与B关于直线对称,,,点故选:A.【点睛】本题考查反比例函数与一次函数的交点问题,反比例函数的图像与性质,圆的对称性及轴对称的性质.解题的关键是灵活运用所学知识解决问题,本题的突破点是发现A,B关于直线对称.12、C【解析】
延长AP交BC于E,根据AP垂直∠B的平分线BP于P,即可求出△ABP≌△BEP,又知△APC和△CPE等底同高,可以证明两三角形面积相等,即可求得△PBC的面积.【详解】延长AP交BC于E.∵AP垂直∠B的平分线BP于P,∴∠ABP=∠EBP,∠APB=∠BPE=90°.在△APB和△EPB中,∵∠APB=∠EPBBP=BP∠ABP=∠EBP,∴△APB≌△EPB(ASA),∴S△APB=S△EPB,AP=PE,∴△APC和△CPE等底同高,∴S△APC=S△PCE,∴S△PBC=S△PBE+S△PCE=12S△ABC故选C.【点睛】本题考查了三角形面积和全等三角形的性质和判定的应用,关键是求出S△PBC=S△PBE+S△PCE=12S△二、填空题:(本大题共6个小题,每小题4分,共24分.)13、1【解析】试题分析:首先把等式a+b=5的等号两边分别平方,即得a2+2ab+b2=25,然后根据题意即可得解.解:∵a+b=5,∴a2+2ab+b2=25,∵ab=3,∴a2+b2=1.故答案为1.考点:完全平方公式.14、2【解析】
将数据排序后,位置在最中间的数值。即将数据分成两部分,一部分大于该数值,一部分小于该数值。中位数的位置:当样本数为奇数时,中位数=(N+1)/2;当样本数为偶数时,中位数为N/2与1+N/2的均值;众数是在一组数据中,出现次数最多的数据。根据定义即可算出.【详解】2、1、5、1、8中只有1出现两次,其余都是1次,得众数为a=1.2、1、5、1、8重新排列2、1、1、5、8,中间的数是1,中位数b=1.∴a﹣b=1-1=2.故答案为:2.【点睛】中位数与众数的定义.15、10πcm1.【解析】
根据已知条件得到四边形ABCD是矩形,求得图中阴影部分的面积=S扇形AOD+S扇形BOC=1S扇形AOD,根据等腰三角形的性质得到∠BAC=∠ABO=36°,由圆周角定理得到∠AOD=71°,于是得到结论.【详解】解:∵AC与BD是⊙O的两条直径,∴∠ABC=∠ADC=∠DAB=∠BCD=90°,∴四边形ABCD是矩形,∴S△ABO=S△CDO=S△AOD=S△BOD,∴图中阴影部分的面积=S扇形AOD+S扇形BOC=1S扇形AOD,∵OA=OB,∴∠BAC=∠ABO=36°,∴∠AOD=71°,∴图中阴影部分的面积=1×=10π,故答案为10πcm1.点睛:本题考查了扇形的面积,矩形的判定和性质,圆周角定理的推论,三角形外角的性质,熟练掌握扇形的面积公式是解题的关键.16、1.【解析】试题分析:把这两个方程相加可得1a-1b=9,两边同时除以1可得a-b=1.考点:整体思想.17、【解析】
根据同弧或等弧所对的圆周角相等来求解.【详解】解:∵∠E=∠ABD,∴tan∠AED=tan∠ABD==.故选D.【点睛】本题利用了圆周角定理(同弧或等弧所对的圆周角相等)和正切的概念求解.18、90°【解析】
连接OE,根据圆周角定理即可求出答案.【详解】解:连接OE,
根据圆周角定理可知:
∠C=∠AOE,∠D=∠BOE,
则∠C+∠D=(∠AOE+∠BOE)=90°,
故答案为:90°.【点睛】本题主要考查了圆周角定理,解题要掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)答案见解析;(2)B,54°;(3)240人.【解析】
(1)根据D程度的人数和所占抽查总人数的百分率即可求出抽查总人数,然后利用总人数减去A、B、D程度的人数即可求出C程度的人数,然后分别计算出各程度人数占抽查总人数的百分率,从而补全统计图即可;(2)根据众数的定义即可得出结论,然后利用360°乘A程度的人数所占抽查总人数的百分率即可得出结论;(3)利用960乘C程度的人数所占抽查总人数的百分率即可.【详解】解:(1)被调查的学生总人数为人,C程度的人数为人,则的百分比为、的百分比为、的百分比为,补全图形如下:(2)所抽取学生对数学学习喜欢程度的众数是、图②中所在扇形对应的圆心角是.故答案为:;;(3)该年级学生中对数学学习“不太喜欢”的有人答:该年级学生中对数学学习“不太喜欢”的有240人.【点睛】此题考查的是条形统计图和扇形统计图,结合条形统计图和扇形统计图得出有用信息是解决此题的关键.20、(Ⅰ)25、40;(Ⅱ)平均数为68.2分,众数为75分,中位数为75分.【解析】
(1)由直方图可知A的总人数为5,再依据其所占比例20%可求解总人数;由直方图中B的人数为10及总人数可知m的值;(2)根据平均数、众数和中位数的定义求解即可.【详解】(Ⅰ)该教师调查的总人数为(2+3)÷20%=25(人),m%=×100%=40%,即m=40,故答案为:25、40;(Ⅱ)由条形图知95分的有5人、75分的有10人、60分的有6人、30分的有4人,则样本分知的平均数为(分),众数为75分,中位数为第13个数据,即75分.【点睛】理解两幅统计图中各数据的含义及其对应关系是解题关键.21、(1)证明见试题解析;(2)90°.【解析】试题分析:(1)由两边对应成比例且夹角相等的两个三角形相似,即可证明△ACD∽△CBD;(2)由(1)知△ACD∽△CBD,然后根据相似三角形的对应角相等可得:∠A=∠BCD,然后由∠A+∠ACD=90°,可得:∠BCD+∠ACD=90°,即∠ACB=90°.试题解析:(1)∵CD是边AB上的高,∴∠ADC=∠CDB=90°,∵.∴△ACD∽△CBD;(2)∵△ACD∽△CBD,∴∠A=∠BCD,在△ACD中,∠ADC=90°,∴∠A+∠ACD=90°,∴∠BCD+∠ACD=90°,即∠ACB=90°.考点:相似三角形的判定与性质.22、(1)补图见解析;(2)27°;(3)1800名【解析】
(1)根据A类的人数是10,所占的百分比是25%即可求得总人数,然后根据百分比的意义求得B类的人数;
(2)用360°乘以对应的比例即可求解;
(3)用总人数乘以对应的百分比即可求解.【详解】(1)抽取的总人数是:10÷25%=40(人),在B类的人数是:40×30%=12(人).;(2)扇形统计图扇形D的圆心角的度数是:360×=27°;(3)能在1.5小时内完成家庭作业的人数是:2000×(25%+30%+35%)=1800(人).考点:条形统计图、扇形统计图.23、y=+2x;(-1,-1).【解析】试题分析:首先将两点代入解析式列出关于b和c的二元一次方程组,然后求出b和c的值,然后将抛物线配方成顶点式,求出顶点坐标.试题解析:将点(0,0)和(1,3)代入解析式得:解得:∴抛物线的解析式为y=+2x∴y=+2x=-1∴顶点坐标为(-1,-1).考点:待定系数法求函数解析式.24、(1)见解析;(2);(3)当或8时,与相似.【解析】
(1)想办法证明即可解决问题;(2)作A于M,于N.则四边形AMPN是矩形.想办法求出AQ、PN的长即可解决问题;(3)因为,所以,又,推出,推出相似时,与相似,分两种情形讨论即可解决问题;【详解】(1)证明:四边形ABCD是等腰梯形,,,,,,,.(2)解:作于M,于N.则四边形是矩形.在中,,,,,,.(3)解:,,,相似时,与相似,,当时,,此时,当时,,此时,综上所述,当PB=5或8时,与△相似.【点睛】本题考查几何综合题、圆的有关性质、等腰梯形的性质,锐角三角函数、相似三角形的判定和性质、平行线的性质等知识,解题的关键是正确寻找相似三角形解决问题,学会添加常用辅助线,构造直角三角形和特殊四边形解决问题,属于中考压轴题.25、(1)见解析:(2)见解析.【解析】试题分析:(1)根据角平分线的作法作出∠BAE的平分线AP即可;(2)先证明△ABO≌△CBO,得到AO=CO,AB=CB,再证明△ABO≌△ADO,得到BO=DO.由对角线互相平分的四边形是平行四边形及有一组邻边相等的平行四边形是菱形即可证明四边形ABCD是菱形.试题解析:(1)如图所示:(2)如图:在△ABO和△CBO中,∵∠ABO=∠CBO,OB=OB,∠AOB=∠COB=90°,∴△ABO≌△CBO(ASA),∴AO=CO,AB=CB.在△ABO和△ADO中,∵∠OAB=∠OAD,OA=OA,∠AOB=∠AOD=90°,∴△ABO≌△ADO(ASA),∴BO=DO.∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,∵AB=CB,∴平行四边形ABCD是菱形.考点:1.菱形的判定;2.作图—基本作图.26、(1)k的值为3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度楼层套房租赁合同书(含私人厨师服务)4篇
- 2025版企业安全保卫力量派遣合同范本4篇
- 2025版智能烘焙面包砖设备租赁合同范本4篇
- 2025年度个人股权赠与协议(股权捐赠)4篇
- 二零二五年度苗木种植与林业产业结构调整合同样本4篇
- 2024陶瓷厂劳务外派合同标准模板3篇
- 2025版智能家居瓷砖装饰工程承包合同文本2篇
- 二零二五版模具行业知识产权保护合同4篇
- 2025彩钢瓦建筑构件采购合同标准范本3篇
- 2025版新能源储能系统关键零配件采购与集成服务合同4篇
- 加强教师队伍建设教师领域学习二十届三中全会精神专题课
- 2024-2025学年人教版数学七年级上册期末复习卷(含答案)
- 四年级数学上册人教版24秋《小学学霸单元期末标准卷》考前专项冲刺训练
- 2025年慢性阻塞性肺疾病全球创议GOLD指南修订解读课件
- (完整版)减数分裂课件
- 五年级数学(小数乘除法)计算题专项练习及答案
- 小学数学知识结构化教学
- 2022年睾丸肿瘤诊断治疗指南
- 被执行人给法院执行局写申请范本
- 饭店管理基础知识(第三版)中职PPT完整全套教学课件
- 2023年重庆市中考物理A卷试卷【含答案】
评论
0/150
提交评论