综合解析-人教版数学八年级上册期中模拟试题 卷(Ⅱ)(详解版)_第1页
综合解析-人教版数学八年级上册期中模拟试题 卷(Ⅱ)(详解版)_第2页
综合解析-人教版数学八年级上册期中模拟试题 卷(Ⅱ)(详解版)_第3页
综合解析-人教版数学八年级上册期中模拟试题 卷(Ⅱ)(详解版)_第4页
综合解析-人教版数学八年级上册期中模拟试题 卷(Ⅱ)(详解版)_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题35分)一、单选题(5小题,每小题3分,共计15分)1、如图,与交于点,,则的度数为()A. B. C. D.2、如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3=(

)A.80° B.70° C.60° D.90°3、在下列条件中:①∠A+∠B=∠C;②∠A=∠B=2∠C;③∠A=∠B=a∠C;④∠A∶∠B∶∠C=1∶2∶3,能确定△ABC为直角三角形的条件有()A.1个 B.2个 C.3个 D.4个4、如图,△ABC的三边AB,BC,CA长分别是20,30,40,其三条角平分线将△ABC分为三个三角形,则S△ABO:S△BCO:S△CAO等于()A.1:1:1 B.1:2:3 C.2:3:4 D.3:4:55、等腰三角形有两条边长为5cm和9cm,则该三角形的周长是A.19cm B.23cm C.19cm或23cm D.18cm二、多选题(5小题,每小题4分,共计20分)1、如图,点P在∠AOB的平分线上,若使△AOP≌△BOP,则需添加的一个条件是(

)A.OA=OB B.AP=BP C.∠AOP=∠BOP D.∠APO=∠BPO2、如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的()A.∠E=∠F B.EC=BF C.AB=CD D.AB=BC······线······○······封······○······密······○······内······○······号学 级年 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······A.BC=EF B.∠C=∠F C.AB∥DE D.∠A=∠D4、下列命题中正确的是()A.有两个角和第三个角的平分线对应相等的两个三角形全等;B.有两条边和第三条边上的中线对应相等的两个三角形全等;C.有两条边和第三条边上的高对应相等的两个三角形全等D.有两条边和一个角对应相等的两个三角形全等5、如图,等腰三角形ABC中,AB=AC,D、E都在BC上,要使△ABD≌△ACE,添加一个条件可行的是(

A.AD=AE B.BD=CE C.BE=CD D.∠BAD=∠CAE第Ⅱ卷(非选择题65分)三、填空题(5小题,每小题5分,共计25分)1、如图,以正六边形ADHGFE的一边AD为边向外作正方形ABCD,则∠BED=_______°.2、如图,AB∥CD,∠DCE=118°,∠AEC的角平分线EF与GF相交于点F,∠BGF=132°,则∠F的度数是__.3、如图,在△ABC中,AC=BC,∠ABC=54°,CE平分∠ACB,AD平分∠CAB,CE与AD交于点F,G为△ABC外一点,∠ACD=∠FCG,∠CBG=∠CAF,连接DG.下列结论:①△ACF≌△BCG;②∠BGC=117°;③S△ACE=S△CFD+S△BCG;④AD=DG+BG.其中结论正确的是_____________(只需要填写序号).4、一副三角尺如图摆放,是延长线上一点,是上一点,,,,若∥,则等于_________度.······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······5、在等腰△ABC中,AB=AC,AC腰上的中线BD将三角形周长分为15和21两部分,则这个三角形的底边长为______.四、解答题(5小题,每小题8分,共计40分)1、如图,已知在中,,AD是BC边上的高,AE是的平分线,求证:.2、如图,在△ABC中,∠A=55°,∠ABD=32°,∠ACB=70°,且CE平分∠ACB,求∠DEC的度数.3、如图所示,在三角形ABC中,,,作的平分线与AC交于点E,求证:.4、如图∠A=20°,∠B=45°,∠C=40°,求∠DFE的度数.5、如图所示,已知FD⊥BC于D,DE⊥AB于E,∠AFD=150°,∠B=∠C,求∠EDF的大小.-参考答案-一、单选题······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······【解析】【分析】先根据三角形的内角和定理可求出,再根据平行线的性质即可得.【详解】故选:A.【考点】本题考查了三角形的内角和定理、平行线的性质,熟记平行线的性质是解题关键.2、A【解析】【分析】先根据平行线的性质求出∠C的度数,再由三角形外角的性质可得出结论.【详解】∵AB∥CD,∠1=45°,∴∠C=∠1=45°.∵∠2=35°,∴∠3=∠2+∠C=35°+45°=80°.故选A.【考点】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.3、B【解析】【详解】分析:根据所给的4个条件分别求出4个条件下△ABC中的最大角的度数,再进行判断即可.详解:①∵∠A+∠B=∠C,∠A+∠B+∠C=180°,∴∠C=180°×=90°,∴此时△ABC是直角三角形;②∵∠A=∠B=2∠C,∠A+∠B+∠C=180°,∴5∠C=180°,解得∠C=36°,∴∠A=∠B=72°,∴此时△ABC不是直角三角形;③∵∠A=∠B=a∠C,∠A+∠B+∠C=180°,∴(2a+1)∠C=180°,解得∠C=,∴∠A=∠B=,∴此时△ABC中三个内角的度数是不确定的,∴不能确定△ABC是否是直角三角形;④∵∠A∶∠B∶∠C=1∶2∶3,∠A+∠B+∠C=180°,······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······∴此时△ABC是直角三角形.综上所述,根据上述条件能够确定△ABC是直角三角形的有2个.故选B.点睛:本题的解题要点是:“根据已知条件结合三角形内角和是180°确定出△ABC的最大角的度数即可判断此时△ABC是否是直角三角形了”.4、C【解析】【分析】过点作于点,作于点,作于点,先根据角平分线的性质可得,再根据三角形的面积公式即可得.【详解】解:如图,过点作于点,作于点,作于点,是的三条角平分线,,,故选:C.【考点】本题考查了角平分线的性质,熟练掌握角平分线的性质是解题关键.5、C【解析】【分析】根据周长的计算公式计算即可.(三角形的周长等于三边之和.)【详解】根据三角形的周长公式可得:C=5+5+9=19或C=9+9+5=23.【考点】本题主要考查等腰三角形的性质,关键在于本题没有说明那个长是等腰三角形的腰,因此要分类讨论.二、多选题1、AD【解析】【分析】由已知可知一边一角对应相等,再结合各选项根据全等三角形的判定方法逐一进行判断即可.【详解】∵点P在∠AOB的平分线上,∴,又有,A、若,可用边角边证明△AOP≌△BOP,故本选项符合题意;B、若,是边边角,不能证明△AOP≌△BOP,故本选项不符合题意;C、若,只有一对角,一对边对应相等,不能证明△AOP≌△BOP,故本选项不符合题意;D、若,可用角边角证明△AOP≌△BOP,故本选项符合题意;······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······【考点】本题主要考查了全等三角形的判定,熟练掌握全等三角形的判定方法——边角边、角边角、边边边是解题的关键.2、AC【解析】【分析】由条件可得∠A=∠D,结合AE=DF,则还需要一边或一角,再结合选项可求得答案.【详解】解:∵AE∥DF,∴∠A=∠D,∵AE=DF,∴要使△EAC≌△FDB,还需要AC=BD或∠E=∠F或∠ACE=∠DBF,∴当AB=CD时,可得AB+BC=BC+CD,即AC=BD,选项A、C符合,B、D不符合.故选:AC.【考点】本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键.3、ABD【解析】【分析】根据题目中的条件,可以得到BC=EF,AB=DE,然后即可判断各个选项中添加的条件是否能使得△ABC≌△DEF,从而可以解答本题.【详解】解:∵BE=CF,∴BE+EC=CF+EC,∴BC=EF,又∵AB=DE,∴添加条件BC=EF,根据SS不能判断△ABC≌△DEF,故选项A符合题意;添加条件∠C=∠F,根据SSA不能判断△ABC≌△DEF,故选项B符合题意;添加条件AB∥DE,可以得到∠B=∠DEF,根据(SAS)可判断△ABC≌△DEF,故选项C不符合题意;添加条件∠A=∠D,根据SSA不能判断△ABC≌△DEF,故选项D符合题意;故选:ABD.【考点】本题主要考查了全等三角形的判定,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.4、AB【解析】【分析】结合已知条件和全等三角形的判定方法,对所给的四个命题依次判定,即可解答.【详解】A、正确.可以用AAS判定两个三角形全等;如图:∠B=∠B′,∠C=∠C′,AD平分∠BAC,A′D′平分∠B′A′C′,且AD=A′D′,······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······∵∠B=∠B′,∠C=∠C′,∴∠BAC=∠B′A′C′,∵AD,A′D′分别平分∠BAC,∠B′A′C′,∴∠BAD=∠B′A′D′∵,∴△ABD≌△A′B′D′(AAS),∴AB=A′B′,在△ABC和△A′B′C′中,,∴△ABC≌△A′B′C′(AAS).B、正确.可以用“倍长中线法”,用SAS定理,判断两个三角形全等,如图,,,,AD,A′D′分别为、的中线,分别延长AD,A′D′到E,E′,使得AD=DE,A′D′=D′E′,∵,∴△ADC≌△EDB,∴BE=AC,,同理:B′E′=A′C′,,∴BE=B′E′,AE=A′E′,∵∴△ABE≌△A′B′E′,∴∠BAE=∠B′A′E′,∠E=∠E′,∴∠CAD=∠C′A′D′,∵,∴∠BAC=∠B′A′C′,∵,,∴△BAC≌△B′A′C′.C、不正确.因为这个高可能在三角形的内部,也有可能在三角形的外部,也就是说,这两个三角形可能一个是锐角三角形,一个是钝角三角形,所以就不全等.D、不正确,必须是两边及其夹角分别对应相等的两个三角形全等.故选:AB.【考点】本题考查了全等三角形的判定方法,要根据选项提供的已知条件逐个分析,看是否符合全等三角形的判定方法,注意SSA是不能判定两三角形全等的.5、ABCD【解析】······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······根据全等三角形的判定定理SAS,ASA,AAS,SSS,对每一个选项进行判断即可.【详解】解:∵在△ABC中,AB=AC,∴∠B=∠C,当AD=AE时,∴∠ADE=∠AED,∵∠ADE=∠B+∠BAD,∠AED=∠C+∠CAE,∴∠BAD=∠CAE,然后根据SAS或ASA或AAS可判定△ABD≌△ACE;当BD=CE时,根据SAS可判定△ABD≌△ACE;当BE=CD时,∴BE−DE=CD−DE,即BD=CE,根据SAS可判定△ABD≌△ACE;当∠BAD=∠CAE时,根据ASA可判定△ABD≌△ACE.综上所述ABCD均可判定△ABD≌△ACE.故选:ABCD.【考点】本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,题目比较好,难度适中.三、填空题1、45°【解析】【详解】∵正六边形ADHGFE的内角为120°,正方形ABCD的内角为90°,∴∠BAE=360°-90°-120°=150°,∵AB=AE,∴∠BEA=(180°-150°)÷2=15°,∵∠DAE=120°,AD=AE,∴∠AED=(180°-120°)÷2=30°,∴∠BED=15°+30°=45°.2、11°.【解析】【详解】分析:本题考查的是平行线的内错角相等,角平分线的性质和三角形外角的性质.解析:∵AB//CD,∠DCE=118°,∴∠AEC=118°,∵∠AEC的角平分线EF与GF相交线于点F,∴∠AEF=∠FEC=59°,∵∠BGF=132°,∴∠F=11°.故答案为11°.3、①②④【解析】【分析】根据条件求得∠BAC=∠ABC=54°,∠ACB=72°,∠ACE=∠BCE=36°,∠CAF=∠BAF=27°,利用ASA证明△ACF≌△BCG,再根据SAS证明△CDF≌△CDG,据此即可推断各选项的正确性.【详解】······线······○······封······○······密······○······内······○······号学 级年 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······∴∠BAC=∠ABC=54°,∠ACB=180°-54°-54°=72°,∵AC=BC,CE平分∠ACB,AD平分∠CAB,∴∠ACE=∠BCE=∠ACB=36°,∠CAF=∠BAF=∠BAC=27°,∵∠ACD=∠FCG=72°,∴∠BCG=∠FCG-36°=36°,在△ACF和△BCG中,,∴△ACF≌△BCG(ASA);故①正确;∴∠BGC=∠AFC=180°-36°-27°=117°,故②正确;∴CF=CG,AF=BG,在△CDF和△CDG中,,∴△CDF≌△CDG(SAS),∴DF=DG,∴AD=DF+AF=DG+BG,故④正确;∵S△CFD+S△BCG=S△CFD+S△ACF=S△ACD,而S△ACE不等于S△ACD,故③不正确;综上,正确的是①②④,故答案为:①②④.【考点】本题考查了全等三角形的判定和性质,三角形内角和定理,角平分线的定义,解题的关键是灵活运用所学知识解决问题,4、15【解析】【分析】根据三角形内角和定理得出∠ACB=60°,∠DEF=45°,再根据两直线平行内错角相等得到∠CEF=∠ACB=60°,根据角的和差求解即可.【详解】解:在△ABC中,∵,,∴∠ACB=60°.在△DEF中,∵∠EDF=90°,,∴∠DEF=45°.又∵∥,∴∠CEF=∠ACB=60°,∴∠CED=∠CEF-∠DEF=60°-45°=15°.故答案为:15.【考点】本题考查三角形内角和定理及平行线的性质,熟练掌握平行线的性质是解题的关键.5、16或8【解析】【分析】······线······○······封······○······密······○······内······○······号学 级年 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······【详解】解:∵BD是等腰△ABC的中线,可设AD=CD=x,则AB=AC=2x又知BD将三角形周长分为15和21两部分∴可知分为两种情况①AB+AD=15,即3x=15,解得x=5,此时BC=21﹣x=21﹣5=16②AB+AD=21,即3x=21,解得x=7;此时等腰△ABC的三边分别为14,14,8经验证,这两种情况都是成立的∴这个三角形的底边长为8或16故答案为:16或8【考点】本题主要考查来了等边三角形的性质以及三角形的三边关系(两边之和大于第三边,两边只差小于第三边),注意求出的结果燕验证三角形的三边关系,掌握分类讨论思想是解题的关键.四、解答题1、证明见解析.【解析】【详解】试题分析:根据三角形内角和定理以及AD是BC边上的高,求得∠BAD=90°-∠B,再根据AE平分∠BAC,求得∠BAE=∠BAC=(180°-∠B-∠C)=90°-∠B-∠C,最后根据∠DAE=∠BAE-∠BAD即可求解.试题解析:∵AD是BC边上的高,∴∠BAD=90°-∠B.∵AE平分∠BAC,∴∠BAE=∠BAC=(180°-∠B-∠C)=90°-∠B-∠C.∵∠DAE=∠BAE-∠BAD,∴∠DAE=(90°-∠B-∠C)-(90°-∠B)=∠B-∠C=(∠B-∠C).2、∠DEC=58°.【解析】【分析】先根据∠A=55°,∠ACB=70°得出∠ABC的度数,再由∠ABD=32°得出∠CBD的度数,根据CE平分∠ACB得出∠BCE的度数,最后用三角形的外角即可得出结论.【详解】在△ABC中,∵∠A=55°,∠ACB=70°,∴∠ABC=55°,∵∠ABD=32°,∴∠CBD=∠ABC-∠ABD=23°,······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○···

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论