版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省绵阳富乐国际2023-2024学年中考联考数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.“嫦娥一号”卫星顺利进入绕月工作轨道,行程约有1800000千米,1800000这个数用科学记数法可以表示为A. B. C. D.2.射击训练中,甲、乙、丙、丁四人每人射击10次,平均环数均为8.7环,方差分别为,,,,则四人中成绩最稳定的是()A.甲 B.乙 C.丙 D.丁3.计算a•a2的结果是()A.aB.a2C.2a2D.a34.如图是由两个小正方体和一个圆锥体组成的立体图形,其主视图是()A. B. C. D.5.菱形的两条对角线长分别是6cm和8cm,则它的面积是()A.6cm2 B.12cm2 C.24cm2 D.48cm26.2014年我省财政收入比2013年增长8.9%,2015年比2014年增长9.5%,若2013年和2015年我省财政收入分别为a亿元和b亿元,则a、b之间满足的关系式为()A.b=a(1+8.9%+9.5%) B.b=a(1+8.9%×9.5%)C.b=a(1+8.9%)(1+9.5%) D.b=a7.体育测试中,小进和小俊进行800米跑测试,小进的速度是小俊的1.25倍,小进比小俊少用了40秒,设小俊的速度是米/秒,则所列方程正确的是()A. B.C. D.8.关于▱ABCD的叙述,不正确的是()A.若AB⊥BC,则▱ABCD是矩形B.若AC⊥BD,则▱ABCD是正方形C.若AC=BD,则▱ABCD是矩形D.若AB=AD,则▱ABCD是菱形9.某小组5名同学在一周内参加家务劳动的时间如表所示,关于“劳动时间”的这组数据,以下说法正确的是()动时间(小时)33.544.5人数1121A.中位数是4,平均数是3.75 B.众数是4,平均数是3.75C.中位数是4,平均数是3.8 D.众数是2,平均数是3.810.如图所示,有一条线段是()的中线,该线段是().A.线段GH B.线段AD C.线段AE D.线段AF11.据统计,2015年广州地铁日均客运量均为人次,将用科学记数法表示为()A. B. C. D.12.如图,正方形ABCD中,AB=6,G是BC的中点.将△ABG沿AG对折至△AFG,延长GF交DC于点E,则DE的长是()A.1 B.1.5 C.2 D.2.5二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知且,则=__________.14.如图,从直径为4cm的圆形纸片中,剪出一个圆心角为90°的扇形OAB,且点O、A、B在圆周上,把它围成一个圆锥,则圆锥的底面圆的半径是_____cm.15.已知扇形的圆心角为120°,弧长为6π,则扇形的面积是_____.16.如下图,在直径AB的半圆O中,弦AC、BD相交于点E,EC=2,BE=1.则cos∠BEC=________.17.分解因式:2m2-8=_______________.18.计算:+=______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)太阳能光伏发电因其清洁、安全、便利、高效等特点,已成为世界各国普遍关注和重点发展的新兴产业,如图是太阳能电池板支撑架的截面图,其中的粗线表示支撑角钢,太阳能电池板与支撑角钢AB的长度相同,均为300cm,AB的倾斜角为,BE=CA=50cm,支撑角钢CD,EF与底座地基台面接触点分别为D,F,CD垂直于地面,于点E.两个底座地基高度相同(即点D,F到地面的垂直距离相同),均为30cm,点A到地面的垂直距离为50cm,求支撑角钢CD和EF的长度各是多少cm(结果保留根号)20.(6分)如图,已知抛物线y=x2﹣4与x轴交于点A,B(点A位于点B的左侧),C为顶点,直线y=x+m经过点A,与y轴交于点D.求线段AD的长;平移该抛物线得到一条新拋物线,设新抛物线的顶点为C′.若新抛物线经过点D,并且新抛物线的顶点和原抛物线的顶点的连线CC′平行于直线AD,求新抛物线对应的函数表达式.21.(6分)如图,在等边△ABC中,点D是AB边上一点,连接CD,将线段CD绕点C按顺时针方向旋转60°后得到CE,连接AE.求证:AE∥BC.22.(8分)如图,在△ABC中,AB=AC,点,在边上,.求证:.23.(8分)受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,我市某汽车零部件生产企业的利润逐年提高,据统计,2014年利润为2亿元,2016年利润为2.88亿元.求该企业从2014年到2016年利润的年平均增长率;若2017年保持前两年利润的年平均增长率不变,该企业2017年的利润能否超过3.4亿元?24.(10分)如图,AB是⊙O的直径,点C为⊙O上一点,经过C作CD⊥AB于点D,CF是⊙O的切线,过点A作AE⊥CF于E,连接AC.(1)求证:AE=AD.(2)若AE=3,CD=4,求AB的长.25.(10分)如图,已知四边形ABCD是矩形,把矩形沿直线AC折叠,点B落在点E处,连接DE.若DE:AC=3:5,求的值.26.(12分)如图,已知直线与抛物线相交于A,B两点,且点A(1,-4)为抛物线的顶点,点B在x轴上.(1)求抛物线的解析式;(2)在(1)中抛物线的第二象限图象上是否存在一点P,使△POB与△POC全等?若存在,求出点P的坐标;若不存在,请说明理由;(3)若点Q是y轴上一点,且△ABQ为直角三角形,求点Q的坐标.27.(12分)2018年湖南省进入高中学习的学生三年后将面对新高考,高考方案与高校招生政策都将有重大变化.某部门为了了解政策的宣传情况,对某初级中学学生进行了随机抽样调查,根据学生对政策的了解程度由高到低分为A,B,C,D四个等级,并对调查结果分析后绘制了如下两幅图不完整的统计图.请你根据图中提供的信息完成下列问题:(1)求被调查学生的人数,并将条形统计图补充完整;(2)求扇形统计图中的A等对应的扇形圆心角的度数;(3)已知该校有1500名学生,估计该校学生对政策内容了解程度达到A等的学生有多少人?
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、C【解析】分析:一个绝对值大于10的数可以表示为的形式,其中为整数.确定的值时,整数位数减去1即可.当原数绝对值>1时,是正数;当原数的绝对值<1时,是负数.详解:1800000这个数用科学记数法可以表示为故选C.点睛:考查科学记数法,掌握绝对值大于1的数的表示方法是解题的关键.2、D【解析】
根据方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好可得答案.【详解】∵0.45<0.51<0.62,∴丁成绩最稳定,故选D.【点睛】此题主要考查了方差,关键是掌握方差越小,稳定性越大.3、D【解析】a·a2=a3.故选D.4、B【解析】主视图是从正面看得到的视图,从正面看上面圆锥看见的是:三角形,下面两个正方体看见的是两个正方形.故选B.5、C【解析】
已知对角线的长度,根据菱形的面积计算公式即可计算菱形的面积.【详解】根据对角线的长可以求得菱形的面积,根据S=ab=×6cm×8cm=14cm1.故选:C.【点睛】考查菱形的面积公式,熟练掌握菱形面积的两种计算方法是解题的关键.6、C【解析】
根据2013年我省财政收入和2014年我省财政收入比2013年增长8.9%,求出2014年我省财政收入,再根据出2015年比2014年增长9.5%,2015年我省财政收为b亿元,即可得出a、b之间的关系式.【详解】∵2013年我省财政收入为a亿元,2014年我省财政收入比2013年增长8.9%,∴2014年我省财政收入为a(1+8.9%)亿元,∵2015年比2014年增长9.5%,2015年我省财政收为b亿元,∴2015年我省财政收为b=a(1+8.9%)(1+9.5%);故选C.【点睛】此题考查了列代数式,关键是根据题意求出2014年我省财政的收入,是一道基础题.7、C【解析】
先分别表示出小进和小俊跑800米的时间,再根据小进比小俊少用了40秒列出方程即可.【详解】小进跑800米用的时间为秒,小俊跑800米用的时间为秒,∵小进比小俊少用了40秒,方程是,故选C.【点睛】本题考查了列分式方程解应用题,能找出题目中的相等关系式是解此题的关键.8、B【解析】
由矩形和菱形的判定方法得出A、C、D正确,B不正确;即可得出结论.【详解】解:A、若AB⊥BC,则是矩形,正确;B、若,则是正方形,不正确;C、若,则是矩形,正确;D、若,则是菱形,正确;故选B.【点睛】本题考查了正方形的判定、矩形的判定、菱形的判定;熟练掌握正方形的判定、矩形的判定、菱形的判定是解题的关键.9、C【解析】试题解析:这组数据中4出现的次数最多,众数为4,∵共有5个人,∴第3个人的劳动时间为中位数,故中位数为:4,平均数为:=3.1.故选C.10、B【解析】
根据三角形一边的中点与此边所对顶点的连线叫做三角形的中线逐一判断即可得.【详解】根据三角形中线的定义知:线段AD是△ABC的中线.故选B.【点睛】本题考查了三角形的中线,解题的关键是掌握三角形一边的中点与此边所对顶点的连线叫做三角形的中线.11、D【解析】
科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.【详解】解:6
590
000=6.59×1.故选:D.【点睛】本题考查学生对科学记数法的掌握,一定要注意a的形式,以及指数n的确定方法.12、C【解析】
连接AE,根据翻折变换的性质和正方形的性质可证Rt△AFE≌Rt△ADE,在直角△ECG中,根据勾股定理求出DE的长.【详解】连接AE,∵AB=AD=AF,∠D=∠AFE=90°,由折叠的性质得:Rt△ABG≌Rt△AFG,在△AFE和△ADE中,∵AE=AE,AD=AF,∠D=∠AFE,∴Rt△AFE≌Rt△ADE,∴EF=DE,设DE=FE=x,则CG=3,EC=6−x.在直角△ECG中,根据勾股定理,得:(6−x)2+9=(x+3)2,解得x=2.则DE=2.【点睛】熟练掌握翻折变换、正方形的性质、全等三角形的判定与性质是本题的解题关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、【解析】分析:根据相似三角形的面积比等于相似比的平方求解即可.详解:∵△ABC∽△A′B′C′,∴S△ABC:S△A′B′C′=AB2:A′B′2=1:2,∴AB:A′B′=1:.点睛:本题的关键是理解相似三角形的面积比等于相似比的平方.14、【解析】
设圆锥的底面圆的半径为r,由于∠AOB=90°得到AB为圆形纸片的直径,则OB=cm,根据弧长公式计算出扇形OAB的弧AB的长,然后根据圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长进行计算.【详解】解:设圆锥的底面圆的半径为r,连结AB,如图,∵扇形OAB的圆心角为90°,∴∠AOB=90°,∴AB为圆形纸片的直径,∴AB=4cm,∴OB=cm,∴扇形OAB的弧AB的长=π,∴2πr=π,∴r=(cm).故答案为.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长.也考查了圆周角定理和弧长公式.15、27π【解析】试题分析:设扇形的半径为r.则,解得r=9,∴扇形的面积==27π.故答案为27π.考点:扇形面积的计算.16、【解析】分析:连接BC,则∠BCE=90°,由余弦的定义求解.详解:连接BC,根据圆周角定理得,∠BCE=90°,所以cos∠BEC=.故答案为.点睛:本题考查了圆周角定理的余弦的定义,求一个锐角的余弦时,需要把这个锐角放到直角三角形中,再根据余弦的定义求解,而圆中直径所对的圆周角是直角.17、2(m+2)(m-2)【解析】
先提取公因式2,再对余下的多项式利用平方差公式继续分解因式.【详解】2m2-8,=2(m2-4),=2(m+2)(m-2)【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法,十字相乘等方法分解.18、1.【解析】
利用同分母分式加法法则进行计算,分母不变,分子相加.【详解】解:原式=.【点睛】本题考查同分母分式的加法,掌握法则正确计算是本题的解题关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、【解析】
过点A作,垂足为G,利用三角函数求出CG,从而求出GD,继而求出CD.连接FD并延长与BA的延长线交于点H,利用三角函数求出CH,由图得出EH,再利用三角函数值求出EF.【详解】过点A作,垂足为G.则,在中,,由题意,得,∴,连接FD并延长与BA的延长线交于点H.由题意,得.在中,,∴.在中,.答:支角钢CD的长为45cm,EF的长为.考点:三角函数的应用20、(1)1;(1)y=x1﹣4x+1或y=x1+6x+1.【解析】
(1)解方程求出点A的坐标,根据勾股定理计算即可;(1)设新抛物线对应的函数表达式为:y=x1+bx+1,根据二次函数的性质求出点C′的坐标,根据题意求出直线CC′的解析式,代入计算即可.【详解】解:(1)由x1﹣4=0得,x1=﹣1,x1=1,∵点A位于点B的左侧,∴A(﹣1,0),∵直线y=x+m经过点A,∴﹣1+m=0,解得,m=1,∴点D的坐标为(0,1),∴AD==1;(1)设新抛物线对应的函数表达式为:y=x1+bx+1,y=x1+bx+1=(x+)1+1﹣,则点C′的坐标为(﹣,1﹣),∵CC′平行于直线AD,且经过C(0,﹣4),∴直线CC′的解析式为:y=x﹣4,∴1﹣=﹣﹣4,解得,b1=﹣4,b1=6,∴新抛物线对应的函数表达式为:y=x1﹣4x+1或y=x1+6x+1.【点睛】本题考查的是抛物线与x轴的交点、待定系数法求函数解析式,掌握二次函数的性质、抛物线与x轴的交点的求法是解题的关键.21、见解析【解析】试题分析:根据等边三角形的性质得出AC=BC,∠B=∠ACB=60°,根据旋转的性质得出CD=CE,∠DCE=60°,求出∠BCD=∠ACE,根据SAS推出△BCD≌△ACE,根据全等得出∠EAC=∠B=60°,求出∠EAC=∠ACB,根据平行线的判定得出即可.试题解析:∵△ABC是等边三角形,∴AC=BC,∠B=∠ACB=60°,∵线段CD绕点C顺时针旋转60°得到CE,∴CD=CE,∠DCE=60°,∴∠DCE=∠ACB,即∠BCD+∠DCA=∠DCA+∠ACE,∴∠BCD=∠ACE,在△BCD与△ACE中,,
∴△BCD≌△ACE,∴∠EAC=∠B=60°,∴∠EAC=∠ACB,∴AE∥BC.22、见解析【解析】试题分析:证明△ABE≌△ACD即可.试题解析:法1:∵AB=AC,∴∠B=∠C,∵AD=CE,∴∠ADE=∠AED,∴△ABE≌△ACD,∴BE=CD,∴BD=CE,法2:如图,作AF⊥BC于F,∵AB=AC,∴BF=CF,∵AD=AE,∴DF=EF,∴BF-DF=CF-EF,即BD=CE.23、(1)20%;(2)能.【解析】
(1)设年平均增长率为x,则2015年利润为2(1+x)亿元,则2016年的年利润为2(1+x)(1+x),根据2016年利润为2.88亿元列方程即可.(2)2017年的利润在2016年的基础上再增加(1+x),据此计算即可.【详解】(1)设该企业从2014年到2016年利润的年平均增长率为x.根据题意,得2(1+x)2=2.88,解得x1=0.2=20%,x2=-2.2(不合题意,舍去).答:该企业从2014年到2016年利润的年平均增长率为20%.(2)如果2017年仍保持相同的年平均增长率,那么2017年该企业年利润为2.88×(1+20%)=3.456(亿元),因为3.456>3.4,所以该企业2017年的利润能超过3.4亿元.【点睛】此题考查一元二次方程的应用---增长率问题,根据题意寻找相等关系列方程是关键,难度不大.24、(1)证明见解析(2)【解析】
(1)连接OC,根据垂直定义和切线性质定理证出△CAE≌△CAD(AAS),得AE=AD;(2)连接CB,由(1)得AD=AE=3,根据勾股定理得:AC=5,由cos∠EAC=,cos∠CAB==,∠EAC=∠CAB,得=.【详解】(1)证明:连接OC,如图所示,∵CD⊥AB,AE⊥CF,∴∠AEC=∠ADC=90°,∵CF是圆O的切线,∴CO⊥CF,即∠ECO=90°,∴AE∥OC,∴∠EAC=∠ACO,∵OA=OC,∴∠CAO=∠ACO,∴∠EAC=∠CAO,在△CAE和△CAD中,,∴△CAE≌△CAD(AAS),∴AE=AD;(2)解:连接CB,如图所示,∵△CAE≌△CAD,AE=3,∴AD=AE=3,∴在Rt△ACD中,AD=3,CD=4,根据勾股定理得:AC=5,在Rt△AEC中,cos∠EAC==,∵AB为直径,∴∠ACB=90°,∴cos∠CAB==,∵∠EAC=∠CAB,∴=,即AB=.【点睛】本题考核知识点:切线性质,锐角三角函数的应用.解题关键点:由全等三角形性质得到线段相等,根据直角三角形性质得到相应等式.25、【解析】
根据翻折的性质可得∠BAC=∠EAC,再根据矩形的对边平行可得AB∥CD,根据两直线平行,内错角相等可得∠DCA=∠BAC,从而得到∠EAC=∠DCA,设AE与CD相交于F,根据等角对等边的性质可得AF=CF,再求出DF=EF,从而得到△ACF和△EDF相似,根据相似三角形得出对应边成比,设DF=3x,FC=5x,在Rt△ADF中,利用勾股定理列式求出AD,再根据矩形的对边相等求出AB,然后代入进行计算即可得解.【详解】解:∵矩形沿直线AC折叠,点B落在点E处,∴CE=BC,∠BAC=∠CAE,∵矩形对边AD=BC,∴AD=CE,设AE、CD相交于点F,在△ADF和△CEF中,,∴△ADF≌△CEF(AAS),∴EF=DF,∵AB∥CD,∴∠BAC=∠ACF,又∵∠BAC=∠CAE,∴∠ACF=∠CAE,∴AF=CF,∴AC∥DE,∴△ACF∽△DEF,∴,设EF=3k,CF=5k,由勾股定理得CE=,∴AD=BC=CE=4k,又∵CD=DF+CF=3k+5k=8k,∴AB=CD=8k,∴AD:AB=(4k):(8k)=.【点睛】本题考查了翻折变换的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理,综合题难度较大,求出△ACF和△DEF相似是解题的关键,也是本题的难点.26、解:(1);(2)存在,P(,);(1)Q点坐标为(0,-)或(0,)或(0,-1)或(0,-1).【解析】
(1)已知点A坐标可确定直线AB的解析式,进一步能求出点B的坐标.点A是抛物线的顶点,那么可以将抛物线的解析式设为顶点式,再代入点B的坐标,依据待定系数法可解.(2)首先由抛物线的解析式求出点C的坐标,在△POB和△POC中,已知的条件是公共边OP,若OB与OC不相等,那么这两个三角形不能构成全等三角形;若OB等于OC,那么还要满足的条件为:∠POC=∠POB,各自去掉一个直角后容易发现,点P正好在第二象限的角平分线上,联立直线y=-x与抛物线的解析式,直接求交点坐标即可,同时还要注意点P在第二象限的限定条件.(1)分别以A、B、Q为直角顶点,分类进行讨论,找出相关的相似三角形,依据对应线段成比例进行求解即可.【详解】解:(1)把A(1,﹣4)代入y=kx﹣6,得k
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 家具导购实战训练绝对成交吴飞彤
- 2024至2030年中国弹力罗缎面料行业投资前景及策略咨询研究报告
- 制造业主要经济业务的核算
- 2024至2030年中国分布移动式切割机数据监测研究报告
- 2024年中国防滑剂市场调查研究报告
- 2024年中国豪华型易拉宝市场调查研究报告
- 2024年中国耐温耐碱消泡剂市场调查研究报告
- 2024年中国塑胶五金制品市场调查研究报告
- 高中数学总复习系列之集合
- 大学三年专科专升本规划计划书
- GB/T 2492-2003普通磨具交付砂轮允许的不平衡量测量
- GB/T 1957-1981光滑极限量规
- GB/T 19249-2017反渗透水处理设备
- 中小学作文教学论文参考文献,参考文献
- 2023年无锡市惠山区财政局系统事业单位招聘笔试题库及答案解析
- 第16课《我的叔叔于勒》课件(共26张PPT) 部编版语文九年级上册
- 2023年北京城市副中心投资建设集团有限公司校园招聘笔试题库及答案解析
- 棉花种子加工方案
- 2022-2023学年浙科版(2019)选择必修三 5.2 我国禁止生殖性克隆人(1) 课件(25张)
- 中小学幼儿园儿童用药安全及健康教育课件
- DB11-T 3032-2022 水利工程建设质量检测管理规范
评论
0/150
提交评论