版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Chapter11.GraphsandTrees11.1Graphs:Introduction11.2PathsandCircuits11.3MatrixRepresentationsofGraphs11.5Trees11.6SpanningTrees1Chapter11.GraphsandTrees1111.1Graphs:Introduction211.1Graphs:Introduction2DefinitionAgraph
Gconsistsoftwofinitesets:asetV(G)ofverticesandasetE(G)ofedges,whereeachedgeisassociatedwithasetconsistingofeitheroneortwoverticescalleditsendpoints.Thecorrespondencefromedgestoendpointsiscalledtheedge-endpointfunction.
Anedgewithjustoneendpointiscalledaloop.Twodistinctedgeswiththesamesetofendpointsaresaidtobeparallel.3Definition3Definition(continued)Anedgeissaidtoconnectitsendpoints.Twoverticesthatareconnectedbyanedgearecalledadjacent.Avertexthatisanendpointofaloopissaidbeadjacenttoitself.Anedgeissaidtobe
incident
oneachofitsendpoints,andtwoedgesincidentonthesameendpointarecalledadjacent.4Definition(continued)4Definition(continued)Avertexonwhichnoedgesareincidentiscalledisolated.Agraphwithnoverticesiscalledempty.Andonewithatleastonevertexiscalled
nonempty.5Definition(continued)5Example11.1.1Forthegraphpicturedbelow.a.Writethevertexsetandtheedgeset,andgiveatableshowingtheedge-endpointfunction.vertexset={v1,v2,v3,v4,v5,v6}edgeset={e1,e2,e3,e4,e5,e6,e7}6Example11.1.1Forthegraphpedge-endpointfunction:e1{v1,v2}e2{v1,v3}e3{v1,v3}e4{v2,v3}e5{v5,v6}e6{v5}e7{v6}7edge-endpointfunction:7b.Find…Edgesthatareincidentonv1:e1,e2,e3Verticesthatareadjacenttov1:v2,v3Edgesthatareadjacenttoe1:e2,e3,e4Allloops:e6,e78b.Find…EdgesthatareincideAllparalleledges:e2ande3Allverticesthatareadjacenttothemselves:v5,v6Allisolatedvertices.v49Allparalleledges:9Example11.1.2Considerthegraphspecifiedasfollows:vertexset={v1,v2,v3.v4}edgeset={e1,e2,e3,e4}edge-endpointfunction:
e1{v1,v2}
e2{v2,v4}
e3{v2,v4}
e4{v3}Drawthegraph.10Example11.1.2ConsiderthegrExample11.1.3Considerthetwodrawingsbelow.Labelverticesandedgesinsuchawaythatbothdrawingrepresentthesamegraph.11Example11.1.311DefinitionAdirectedgraph,ordigraph,consiststwofinitesets:asetV(G)ofverticesandasetE(G)ofdirectededges,whereeachedgeisassociatedwithanorderedpairofverticescalleditsendpoints.Ifedgeeisassociatedwiththepair(v,w)ofvertices,theneissaidtobethe(directed)edgefromvtow.12Definition12Example11.1.4Computer,telephone,electricpower,gaspipeline,andairtransportsystemscanallrepresentedbygraphs.Questionsthatariseinthedesignofsuchsystemsinvolvechoosingconnectingedgestominimizecost,optimizeacertaintypeofservice,andsoforth.Examplesofgraphs13Example11.1.4Computer,teleAtypicalcommunicationsystemisshownatthemiddleofPage654.AlsoseetheExample11.1.514AtypicalcommunicationsySpecialGraphsDefinitionAsimplegraphisagraphthatdoesnothaveanyloopsorparalleledges.Inasimplegraph,anedgewithend-pointsvandwisdenoted{v,
w}15SpecialGraphsDefinition15Example11.1.7
Drawallsimplegraphswiththefourvertices{u,v,w,x}andtwoedges,oneofwhichis{u,v}16Example11.1.716DefinitionAcompletegraph
onnvertices,denotedKn,isasimplegraphwithnverticesv1,v2,…,vn
whosesetofedgescontainsexactlyoneedgeforeachpairofdistinctvertices.Example11.1.8DrawKn,n=2,3,4,5.17DefinitionExample11.1.8171818DefinitionAcompletebipartitegraphon(m,n)vertices,denotedKm,n,isasimplegraphwithmverticesv1,v2,…,vm
andnedgesw1,w2,…,wnthatsatisfiesthefollowingproperties:1.Thereisanedgefromeachvitoeachwj2.Thereisnoedgefromeachvitoanyvk3.Thereisnoedgefromeachwjtoanywl19Definition19Example11.1.9
DrawK3,2andK3,3.20Example11.1.920DefinitionAgraphHissaidtobeasubgraphofagraphGif,andonlyif,everyvertexinHisalsoavertexinG,everyedgeinHisalsoanedgeinG,andeveryedgeinHhasthesameend-pointsasinG.21Definition21Example11.1.10ListallnonemptysubgraphsofthegraphGwithvertexset{v1,v2},edgeset{e1,e2,e3},wheretheendpointsofe1arev1andv2,theendpointofe2arev1andv2,ande3isaloopatv1.22Example11.1.10222323DegreeDefinitionLetGbeagraphandvavertexofG.Thedegree
ofv,denoteddeg(v),equalsthenumberofedgesthatareincidentonv,withanedgethatisaloopcountedtwice.ThetotaldegreeofGisthesumofthedegreesofalltheverticesofG.24DegreeDefinition24Example11.1.11FindthedegreeofeachvertexofthegraphGbelow.ThenfindthetotaldegreeofG.Solution.deg(v1)=0deg(v2)=2deg(v3)=425Example11.1.11Solution.Theorem11.1.1Iftheverticesof
agraphGarev1,v2,…,vn,wherenisapositiveinteger,thenthetotaldegreeofG
=deg(v1)+deg(v2)+…+deg(vn)=2·(theNo.ofedgesofG)Corollary11.1.1ThetotaldegreeofagraphGiseven.26Theorem11.1.1IftheverticesExample11.1.12Drawagraphwiththespecifiedpropertiesorshowthatnosuchgraphexists.a.Graphwithfourverticesofdegrees1,1,2,and3.Solution.Nosuchgraphispossible.Sincethetotaldegreeofagraphiseven.Butagraphwithfourverticesofdegrees1,1,2,and3wouldhaveatotaldegreeof7,whichisodd.27Example11.1.12Solution.27b.Graphwithfourverticesofdegrees1,1,3,and3.Solution.28b.Graphwithfourverticesc.Simplegraphwithfourverticesofdegrees1,1,3,and3.Solution.Nosuchgraphexists.Supposenot.Thatis,thereisasimplegraphwithfourverticesofdegrees1,1,3,and3…29c.SimplegraphwithfourvertExample11.1.13Isitpossibleinagroupofninepeopleforeachtobefriendswithexactlyfiveothers?Proposition11.1.3Inanygraphthereareanevennumberofverticesofodddegree.30Example11.1.13IsitpossiblSolution.No.Suchagraphwouldhavethreeverticesofodddegree,whichisimpossible.Example11.1.14Isthereagraphwithtenverticesofdegrees1,1,2,2,2,3,4,4,4,and6?31Solution.No.SuchagraphwouQuestions:665:1,5,8,9,
12,15,16,19,22,24a,25a,28.Assignments:
665:4,21,23.32Questions:665:1,5,11.2PathsandCircuitsDefinitionLetv,wbeverticesinagraphG.Awalk
fromvtowisafinitealternatingsequenceofadjacentverticesandedgesofGwith
theformv0e1v1e2v2…vn-1envnwherethev’srepresentvertices,thee’srepresentedges,v0=v,vn=w,andforalli=1,2,…,n,vi-1andviaretheendpointsofei.Thetrivialwalkfromvtovconsistsofthesinglevertex.(tobecontinued)3311.2PathsandCircuitsDefinDefinition(continued)Apath
fromvtowisawalkfromvtowthatdoesn’tcontainarepeatededge.Thusapathfromvtowisawalkoftheformv=v0e1v1e2v2…vn-1envn=wwherealltheeiaredistinct(thatis,ei≠ek
foranyi≠k).Asimplepath
fromvtowisapathdoesnotcontainarepeatedvertex.(tobecontinued)34Definition(continued)34Definition(continued)Aclosedwalk
isawalkthatstartsandendsatthesamevertex.Acircuit
isaclosedwalkthatdoesnotcontainarepeatededge.Asimplecircuit
isacircuitthatdoesnothaveanyotherrepeatedvertexexceptthefirstandlast.35Definition(continued)AciExample11.2.1a.Inthegraphbelow,thenotatione1e2e4e3refersunambiguouslytothewalkv1e1v2e2v3e4v3e3v2.Ontheotherhand,thenotatione1isambiguousifusedtorefertoawalk.Itcouldmeaneitherv1e1v2orv2e1v1.36Example11.2.136b.Inthegraphabove,thenotationv2v3isambiguousifusedtorefertoawalk.Itcouldmeanv2e2v3orv2e3v3.Inthegraphbelow,thenotationv1v2v2v3refersunambiguouslytothewalkv1e1v2e2
v2e3v3.37b.Inthegraphabove,theExample11.2.2Inthegraphbelow,determinewhichofthefollowingwalksarepaths,simplepaths,circuits,andsimplecircuits:a.
v1e1v2e3v3e4v3e5v4b.
e1e3e5e5e6c.
v2v3v4v5v3v6v2d.
v2v3v4v5v6v2
e.
v2v3v4v5v6v3v2
f.
v1pathwalkcircuitsimplecircuitclosedwalktrivalwalk38Example11.2.2InthegraphConnectednessDefinitionLetGbeagraph.TwoverticesvandwofGareconnectedif,andonlyif,thereisawalkfromvtow.AgraphGiscalledconnectedif,andonlyif,foranytwoverticesofGtheyareconnected.39ConnectednessDefinition39Example11.2.3Whichofthegraphsbelowisconnected?40Example11.2.340Lemma11.2.1
LetGbeagraph.
a.IfGisconnected,thenanytwodistinctverticesofGcanbeconnectedbyasimplepath.b.IfvandwareverticesofacircuitinGandoneedgeisremovedfromthecircuit,thentherestillexistsapathfromvtow.c.IfGisconnectedandcontainsanon-trivialcircuit,thenanedgeofthecircuitcanberemovedwithoutdisconnectingG.41Lemma11.2.1LetGbeagraph.DefinitionAgraphHisaconnectedcomponentofagraphGif,andonlyif,HissubgraphofG;Hisconnected;andnoconnectedsubgraphofGhasHasasubgraphandcontainsverticesoredgesthatarenotinH.42Definition42Example11.2.4FindallconnectedcomponentsofthegraphGbelow.43Example11.2.4FindallconnEulerCircuitsDefinitionLetGbeagraph.AnEulercircuitforGisacircuitthatcontainseveryvertexandeveryedgeofG.Theorem11.2.2IfagraphhasEulercircuit,theneveryvertexofthegraphhasevendegree.IfsomevertexofagraphhasodddegreethenthegraphhasnoEulercircuit.44EulerCircuitsDefinitionLetExample11.2.5ShowthatthegraphbelowdosenothaveanEulercircuit.45Example11.2.5ShowthatthegTheorem11.2.3Ifeveryvertexofanonemptygraphhasevendegreeandifthegraphisconnected,thenthegraphhasanEulercircuit.Proof.SupposethatGisanynonemptyconnectedgraphandthateveryvertexofGhasevendegree.IfGconsistsofasinglevertexv,thetrivialwalkfromvtovisanEulercircuit.Otherwise,constructacircuitCbythefollowing46Theorem11.2.3IfeveryverteStep2:Pickanysequenceofadjacentverticesandedges,startingandendingatvandneverrepeatinganedge.CalltheresultingcircuitC.Step3:CheckwhetherCcontainseveryedgeandvertexofG.Ifso,CisanEulercircuit,andwearefinished.Ifnot,performthefollowingsteps.Step1:PickanyvertexvofGatwhichtostart.47Step2:PickanysequenceofaStep3c:PickanysequenceofadjacentverticesandedgesofG’,startingandendingatwandneverrepeatinganedge.CalltheresultingcircuitC’.Step3a:RemovealledgesofCfromGandalsoanyverticesthatbecomeisolatedwhentheedgesofCareremoved.CalltheresultingsubgraphG’.Step3b:PickanyvertexwcommontobothCandG’.48Step3c:PickanysequenceofStep3d:PatchCandC’togethertocreateanewcircuitC’’asfollows:startatvandfollowCallthewaytothew.ThenfollowC’allthewaybacktow.Afterthat,continuealongtheuntraveledportionofCtoreturnv.SincethegraphGisfinite,executionofthestepsoutlinedinthealgorithmmusteventuallyterminate.AtthatpointanEulercircuitforGwillhavebeenconstructed.Step3e:LetC=C’’andgobacktoStep3.49Step3d:PatchCandC’togethExample11.2.6UseTheorem11.2.3tocheckthatthegraphbelowhasanEulercircuit.ThenusethealgorithmfromtheproofoftheTheoremtofindanEulercircuitforthegraph.50Example11.2.6UseTheorem1Solution.
(1)abcda(2)dehjid51Solution.(2)dehjid51(3)=(1)+(2)abcdehjida(4)=(1)+(2)hfegh52(3)=(1)+(2)abcdehjida(4)=(1)(5)=(3)+(4)abcdehfeghjida53(5)=(3)+(4)abcdehfeghjida53Definition
LetGbeagraphandletvandwbetwodistinctverticesofG.AnEulerpathfromvtowisasequenceofadjacentedgesandverticesthatstartsatv,endsatw,passesthrougheveryvertexofGatleastonce,andtraverseseveryedgeofGexactlyonce.Theorem11.2.4AgraphGhasanEulercircuitif,andonlyif,GisconnectedandeveryvertexofGhasevendegree.54DefinitionTheorem11.2.4AgrCorollary11.2.5
LetGbeagraphandletvandwbetwodistinctverticesofG.ThereisanEulerpathfromvtowif,andonlyif,Gisconnected,vandwhaveodddegree,and
everyothervertexofGhasevendegree.55Corollary11.2.555Example11.2.7ThefloorplanshownatthebottomonPage676isforahousethatisopenforpublicviewing.IsitpossibletofindapaththatstartsinroomA,endsinroomB,andpassesthrougheveryinteriordoorwayofthehouseexactlyonce?Ifso,findthepath.56Example11.2.7565757HamiltonCircuitsDefinitionLetGbeagraph.AnHamiltoncircuitforGisasimplecircuitthatcontainseveryvertexofG.58HamiltonCircuitsDefinition58Proposition11.2.6LetGbeagraphwithatleasttwovertices.IfGhasaHamiltoncircuitthenGhasasubgraphHwiththefollowingproperties:1.
HcontainseveryvertexofG;2.
Hisconnected;3.
Hhasthesamenumberofedgesasvertices;4.EveryvertexofHhasdegree2.59Proposition11.2.659Example11.2.8ProvethatthegraphGbelowdoesnothaveaHamiltoncircuit.60Example11.2.860Example11.2.9Imaginethatthedrawingbelowisamapshowingfourcitiesandthedistanceinkilometersbetweenthem.Supposethatasalespersonmusttraveltoeachcityexactlyonce,startingandendinginCityv1.Whichroutefromcitytocitywillminimizethetotaldistancethatmustbetraveled?61Example11.2.961Questions:Page679–683:1,4,6a,9a,12,14,19.Assignments:
Page679–683:9bc,15*,18*.62Questions:Page679–683:1,4,11.3MatrixRepresentationsofGraphsMatricesanddirectedgraphsDefinitionLetGbeadirectedgraphwithorderedverticesv1,v2,…,vn.TheadjacencymatrixofGisthematrixA=(aij)overthesetofnonnegativeintegerssuchthataij=No.ofarrowsfromvitovjforalli,j=1,2,…,n.6311.3MatrixRepresentationsExample11.3.2Thetwodirectedgraphsbelowdifferonlyinorderingoftheirvertices.Findtheiradjacencymatrices.64Example11.3.2ThetwodirecteExample11.3.3LetDrawadirectedgraphhavingAasitsadjacencymatrix.65Example11.3.3LetDrawadirMatricesand(undirected)graphsDefinitionLetGbea(undirected)graphwithorderedverticesv1,v2,…,vn.TheadjacencymatrixofGisthematrixA=(aij)overthesetofnonnegativeintegerssuchthataij=No.ofedgesconnectingviandvj
foralli,j=1,2,…,n.66Matricesand(undirected)grapExample11.3.4Findtheiradjacencymatrixforthegraphbelow.67Example11.3.467CountingWalksofLengthNDefinitionA
walkinagraphconsistsofanalternatingsequenceofverticesandedges.Ifrepeatededgesarecountedeachtimetheyoccur.Thenthenumberofedgesinthesequenceiscalledthelengthofthewalk.68CountingWalksofLengthNDefiTheorem11.3.2IfGisagraphwithv1,v2,…,vnandAistheadjacencymatrixofG,thenforeachpositiveintegerm,Theaij-thentryofAm=No.ofwalksoflengthmfromvitovjforalli,j=1,2,…,n.69Theorem11.3.269Assignments:
Page695–6972(a),3(a),4(a),5(a).70Assignments:Page695–6972(a)11.5TreesDefinitionAgraphissaidtobe
circuit-freeif,andonlyif,ithasnonontrivialcircuits.Agraphiscalleda
tree
if,andonlyif,itiscircuit-freeandconnected.7111.5TreesDefinition71DefinitionAtrivialtreeisagraphthatconsistsofasinglevertex,andanemptytreeisatreethatdosenothaveanyverticesoredges.Agraphiscalleda
forestif,andonlyif,itiscircuit-free.72Definition72Example11.5.1Whichgraphsbelowaretreesorarenottrees?73Example11.5.1737474CharacterizingTreesLemma11.5.1Anytreethathasmorethanonevertexhasatleastonevertexofdegree1.Proof.
v1
v2
v3
v4
vn
75CharacterizingTreesLemma11.DefinitionLetTbeatree.Avertexofdegree1inTiscalledaterminalvertex(oraleaf
).Andavertexofdegreegreaterthan1inTiscalledaninternalvertex(orabranchvertex).76Definition76Example11.5.5Findallterminalverticesandallinternalverticesinthetreebelow.77Example11.5.577Theorem11.5.2Foranypositiveintegern,anytreewithnverticeshasn
1edges.Proof.MathematicalInductionandLemma11.5.1.78Theorem11.5.2Proof.MathematiExample11.5.6AgraphGhastenverticesandtwelveedges,Isitatree?Solution.No.Sinceanytreewithtenverticeshasnineedges,nottwelve.79Example11.5.6Solution.79Lemma11.5.3
IfGisanyconnectedgraph,CisanynontrivialcircuitinG,andoneoftheedgesofCisremovedfromG,thenthegraphthatremainsisconnected.Proof.
80Lemma11.5.3IfGisanyconneTheorem11.5.4Foranypositiveintegern,ifGisaconnectedgraphwithnverticesandn-1edges,thenGisatree.Proof.LetnbeapositiveintegerandsupposeGisaparticularbutarbitrarychosengraphthatisconnectedandhasnverticesandn-1edges.SupposeGisnotcircuit-free.Thatis,supposeGhasanontrivalcircuitC.81Theorem11.5.4ForanypositBylemma,anedgeofCcanberemovedfromGtoobtainagraphG’thatisconnected.IfG’hasanontrivialcircuit,
thenrepeat
thisprocess:removeanedgeofthecircuitfromG’toformanewconnectedgraph.
ContinuerepeatingtheprocessofremovingedgesfromcircuitsuntileventuallyagraphG’’isobtainedthatisconnectedandiscircuit-free.82Bylemma,anedgeofCcanBydefinition,G’’isatree.SincenoverticeswereremovedfromGtoformG’’,G’’hasnverticesjustasGdoes.Thus,G’’hasn-1edges.ButthesuppositionthatGhasanontrivalcircuitimpliesthatatleastoneedgeofGisremovedtoformG’’.HenceG’’hasnomorethan
(n-1)-1=n-2edges,whichcontradictsitshavingn-1edges.Sothesuppositionisfalse.HenceGiscircuit-free,andthereforeGisatree.83Bydefinition,G’’isatrExample11.5.8Giveanexampleofagraphwithfiveverticesand4edgesthatisnotatree.Solution.84Example11.5.8GiveanexampleQuestions:722:17,
22,25,27.Assignments:
722:15,16,18,19.85Questions:722:17,211.6SpanningTreesProposition
1.Everyconnectedgraphhasaspanningtree.
2.Anytwospanningtreeforagraphhavethesamenumberofedges.DefinitionAspanningtreeforagraphisa
subgraphofGthatcontainseveryvertexofGandisatree.8611.6SpanningTreesPropositiExample11.6.2Findingallspanningtreesforthefollowinggraph.87Example11.6.2Findingallspa8888DefinitionAweightedgraphisagraphforwhicheachedgehasanassociatedrealnumberweight.Thesumoftheweightsofalltheedgesisthetotalweightofthegraph.IfGisaweightedgraphandeisanedgeofG,thenw(e)denotestheweightofeandw(G)denotesthetotalweightofG.89Definition89DefinitionAminimumspanningtree(MST)foraweightedgraphisaspanningtreethathastheleastpossibletotalweightcomparedtoallotherspanningtreesforthegraph.90Definition90Kruskal’sAlgorithmInput:G[aweightedgraphwithnvertices]AlgorithmBody:[BuildasubgraphTofGtoconsistofalltheverticesofGwithedgesaddedinorderofincreasingweight.Ateachstage,letmbethenumberofedgeofT]Step1.InitializeTtohavealltheverticesofGandnoedges.91Kruskal’sAlgorithm91Step2.LetEbethesetofalledgesofG,andletm:=0.[pre-condition:Gisconnected.]Step3.while(m<n-1)3-1.Find
anedgeeinEofleastweight.3-2.Delete
efromE.3-3.ifadditionofetotheedgesetofTdoesnotproduceacircuit,then
add
etotheedgesetofTandsetm:=m+1
endwhile92Step2.LetEbethesetofal[post-condition:TisaminimumspanningTreeforG]Output:T93[post-condition:TisaExample11.6.4UsingKruskal’salgorithmstofindtheminimumspanningtreeofthefollowinggraph.94Example11.6.4UsingKruskal’sKruskal’sAlgorithm95Kruskal’sAlgorithm9596969797Solution.WhenKruskal’salgorithmisapplied,edgesareaddedinthefollowingorder:{d,f},{a,c},{b,c},{c,d},{d,e}.Andtheminimumspanningtreeiswhichweightis15.98Solution.WhenKruskal’salgorPrim’sAlgorithmInput:G[aweightedgraphwithnvertices]AlgorithmBody:[BuildasubgraphTofGbystartinganyvertexvofGandattachingedges(withtheirendpoints)onebyonetoanas-yet-unconnectedvertexofT,eachtimechoosinganadjacentedgeofleast]Step1.PickavertexvofGandletTbethegraphwithonevertex,v,andnoedges.99Prim’sAlgorithm99Step2.LetVbethesetofallverticesofGexceptv.[pre-condition:Gisconnected.]Step3.for
i:=1ton-13-1.FindanedgeeinGsuchthat:
(1)econnectsTtooneoftheverticesinV,(2)ehastheleastweightofalledgesconnectingTtoavertexinV.LetwbetheendpointsofethatisinV.3-2.Add
eandwtotheedgeandvertexsetsofT,anddelete
wfromV.
next
i100Step2.LetVbethesetofal[post-condition:TisaminimumspanningTreeforG]Output:T101[post-condition:TExample11.6.4UsingPrim’salgorithmsstartingatvertexatofindtheminimumspanningtreeofthefollowinggraph.102Example11.6.4UsingPrim’salPrim’sAlgorithm103Prim’sAlgorithm103104104Solution.WhenPrim’salgorithmisappliedstartingata,edgesareaddedinthefollowingorder:{a,c},{b,c},{d,c},{d,f},{d,e}.Andtheminimumspanningtreeiswhichweightis15.105Solution.WhenPrim’salgorithQuestions:733:1,3,27.Assignments:
733:5,7.106Questions:733:1,3,TheLastChapter:GroupsandFieldsunderstandthedefinitionsofgroup,abeliangroup,subgroup,cyclicgroup,generator,andorderofanelement;determinewhetheragivensetandbinaryoperationformagroupofabeliangroup;107TheLastChapter:GroupsandFdeterminewhetheragivengroupHisasubgroupofagivengroupG;findtheorderoftheelementofagivengroup;understandthedefinitionofafield.108determinewhetheragivengrouG.1DefinitionandexamplesDefinitionG.1.1
Agroup(G,
)isanonemptysetGtogetherwithabinaryoperationonG,suchthat:forallg,h
G,g
h
G;forallg,h,k
G,(g
h)k=g(h
k)G,thatisisassociative;Tobecontinued109G.1DefinitionandexamplesDeContinued
thereisanelemente
G,suchthatforallg
G,
g
e=e
g=g,thatisGhasanidentity;forallg
G,thereisg1
G,suchthatg
g1
=e=g1
g,thatisghasaninverseelement.110Continued110ExampleG.1.2Recalltheequivalencerelation
onZ:xy
x
y(mod6)Theequivalenceclassesforthisrelationarethesets[0]6,[1]6,[2]6,[3]6,[4]6,[5]6.InthiswaythesetofequivalenceclassesisidentifiedwiththesetZ6={0,1,2,3,4,5}.WemaydefineabinaryoperationonZ6asfollows:x
y=z
z
x+y(mod6)Provethat(Z6,)isagroup.111ExampleG.1.2RecalltheequivExampleG.1.3LetBbethesetofall0-1stringsoflengthn.Defineanbinaryoperation
onBasfollows:Leta=a1a2…anandb=b1b2…bnwithai=0or1,andbi=0or1,i=1,2,…,n.Definea
b=c1c2…cn,whereProvethat(B,)isagroup.
112ExampleG.1.3LetBbethesetExampleG.1.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 乡镇宿舍改造合同范例
- 代办陪护服务合同范例
- 兼职总工合同范例
- l安装合同范例
- 全款抵押车买卖合同范例
- 润滑购销合同范例
- 关于项目转让合同范例
- 中药制剂技术练习题库及答案
- 静疗练习题含答案
- 2025年庆阳货运运输驾驶员从业资格证考试试题
- 英语演讲技巧与实训学习通超星期末考试答案章节答案2024年
- 智慧水产养殖解决方案10.9
- 山东省青岛市2024-2025学年七年级上学期11月期中英语试题
- 2024年贵阳新春灯会元宵彩灯策划方案
- 刘润年度演讲2024:进化的力量
- 2024-2030年全球及中国环境健康与安全(EHS)行业市场现状供需分析及市场深度研究发展前景及规划可行性分析研究报告
- 2024年印刷厂管理规章制度范例(三篇)
- 材料工程管理人员个人年终工作总结范文
- ☆问题解决策略:直观分析 教案 2024-2025学年北师大版七年级数学上册
- 养老服务与安全管理作业指导书
- 2024年新人教版七年级上册数学教学课件 第六章 几何图形初步 综合与实践 设计学校田径运动会比赛场地
评论
0/150
提交评论