




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年吉林省长春市朝阳区八年级(下)期末数学试卷一、选择题(每小题3分,共24分)1.(3分)下列函数中,y是x的正比例函数的是()A.y=x B.y=x+1 C. D.2.(3分)为筹备毕业聚餐,班长对全班同学爱吃东北菜、川菜、湘菜、粤菜中的哪一种菜系的人数比较多做了民意调查.班长做决定最关注的统计量是()A.平均数 B.中位数 C.众数 D.方差3.(3分)互联网已经进入5G时代,应用5G网络下载一个1000KB的文件只需要0.00076秒,0.00076这个数用科学记数法表示为()A.7.6×10﹣5 B.7.6×10﹣4 C.7.6×10﹣3 D.76×10﹣24.(3分)下列各点中,在y=x+2的函数图象上的是()A.(5,3) B.(4,2) C.(﹣1,﹣3) D.(1,3)5.(3分)分式方程的解是()A.x=﹣3 B.x=﹣1 C.x=1 D.x=36.(3分)如图,把矩形ABCD沿EF对折,若∠1=48°,则∠AEF的大小为()A.84° B.96° C.114° D.132°7.(3分)如图,在▱ABCD中,E、F是对角线BD上的两点.若四边形AECF为平行四边形,则以下三种方案中正确的方案是()甲:只需要满足BF=DE;乙:只需要满足AE=CF;丙:只需要满足AE∥CF.A.甲、乙 B.甲、丙 C.乙、丙 D.甲、乙、丙8.(3分)如图,在平面直角坐标系中,矩形ABCD的对称轴与坐标轴重合,反比例函数的图象与矩形的边分别交于点E、F、G、H,连结EF、GH.若△AEF与△CGH的面积和为2,且BE=3AE,则k的值为()A.﹣1 B.﹣2 C.﹣4 D.﹣8二、填空题(每小题3分,共18分)9.(3分)约分的结果是.10.(3分)甲、乙两个民族舞蹈团参加演出的女演员人数相同,平均身高相同,身高的方差分别为S甲2=1.6,S乙2=0.9,(填“甲”或“乙”)舞蹈团参加演出的女演员身高更整齐.11.(3分)已知正比例函数y=kx与反比例函数的图象没有交点,写出一个符合条件的k的值为.12.(3分)在▱ABCD中,若∠A与∠B的大小的比是4:5,则∠C的大小为度.13.(3分)在平面直角坐标系中,将直线y=﹣3x向上平移2个单位长度,平移后的直线所对应的函数表达式为.14.(3分)用四块大正方形地砖和一块小正方形地砖拼成如图所示的实线图案,每块大正方形地砖面积为a,小正方形地砖面积为b,依次连接四块大正方形地砖的中心得到正方形ABCD.则正方形ABCD的面积为.(用含a,b的代数式表示)三、解答题(本大题10小题,共78分)15.(6分)计算:(﹣2)0﹣|﹣5|+3﹣2.16.(6分)先化简,再求值:,其中a=﹣5.17.(6分)图①、图②均是5×5的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点,点A、B均为格点.只用无刻度的直尺,在给定的网格中,分别按照下列要求作图,保留作图痕迹.(1)在图①中,以AB为边作一个菱形(正方形除外),菱形的顶点是格点.(2)在图②中,以AB为对角线作一个菱形(正方形除外),菱形的顶点是格点.18.(7分)某科技公司购买了一批A、B两种型号的芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用2600元购买A型芯片的条数与用3500元购买B型芯片的条数相等.求该公司购买B型芯片的单价.19.(7分)2023年新春伊始,中国电影行业迎来了期盼已久的火爆场面,《满江红》、《流浪地球2》、《无名》、《深海》等一大批电影受到广大影迷的青睐.如图的统计图是其中两部电影上映后前六天的单日票房信息.根据以上信息,回答下列问题:(1)1月22日—27日的六天时间内,影片甲单日票房的中位数为亿元;(2)求1月22日—27日的六天时间内影片乙的平均日票房(精确到0.01亿元);(3)对于甲、乙两部影片上映前六天的单日票房,下列说法中所有正确结论的序号是.①影片甲的单日票房逐日增加;②影片乙的单日票房逐日减少;③通过前六天的数据比较,甲单日票房的方差小于乙单日票房的方差;④在前六天的单日票房统计中,甲单日票房和乙单日票房之间的差值在1月26日达到最大.20.(7分)如图,在平行四边形ABCD中,连接BD,E为线段AD的中点,延长BE与CD的延长线交于点F,连接AF,∠BDF=90°,求证:四边形ABDF是矩形.21.(8分)如图,小李和小赵相约去农庄游玩,小李从甲小区骑电动车出发,同时小赵从乙小区开车出发,途中去超市购物,购物后仍按原速继续驶向农庄,甲、乙小区、超市和农庄之间的路程如图①所示,图②中线段OD、BC分别表示小李、小赵行驶中离甲小区的路程s(km)与出发时间t(min)之间的函数图象(或部分图象).(1)求线段BC所对应的函数表达式.(2)请补全小赵离甲小区的路程为s(km)与出发时间t(min)的函数图象.(3)直接写出小赵离开超市后,小李与小赵相距1km时t的值.22.(9分)【教材呈现】如图是华师版八年级下册数学教材第75页练习的部分内容.如图①,如果直线l1∥l2,那么△ABC的面积和△DBC的面积是相等的.【方法探究】如图②,在▱ABCD中,点E在边BC上.若BE=2EC,求S△ABE与S△CDE数量关系.【方法应用】如图③,正方形ABCD的边长为5,点P是正方形内部一点,连结AP、BP.当△ABP是以AB为腰的等腰三角形,且S△ABP=10时,直接写出BP的长.23.(10分)如图,在▱ABCD中,AB=12,AD=10,DE垂直平分AB于点E.点P从点A出发,沿AB以每秒1个单位长度的速度向终点B运动,同时动点Q从点C出发沿射线CD以每秒3个单位长度的速度运动,点P到达终点时,P、Q同时停止运动.设点P运动的时间为t秒(t>0).(1)DE的长为(2)用含t的代数式表示线段DQ的长.(3)当以点A、D、P、Q为顶点的四边形是平行四边形时,求t的值.(4)当△PDQ为钝角三角形时,直接写出t的取值范围.24.(12分)在平面直角坐标系中,直线l:y=kx+b(k≠0)经过点A(﹣2,3),交y轴于点B(0,1).(1)求直线l所对应的函数表达式.(2)若点C是y轴上一点,连结AC.当△ABC的面积为5时,求点C的坐标.(3)已知线段MN的端点坐标分别为M(m﹣1,2)、.①当直线l与线段MN有交点时,求m的取值范围.②已知点P是直线l上一点,其横坐标为m.过点P作直线l′⊥y轴,将直线l在直线l′下方部分记作G1,在直线l′上及其上方的部分记为G2,将G1沿直线l′向上翻折得到G3,G2和G3两部分组成的图象记为G.当图象G与线段MN四有一个公共点时,直接写出m的取值范围.
2022-2023学年吉林省长春市朝阳区八年级(下)期末数学试卷(参考答案)一、选择题(每小题3分,共24分)1.解析:解:A.它符合正比例函数的定义,则A符合题意;B.它不符合正比例函数的定义,则B不符合题意;C.它不符合正比例函数的定义,则C不符合题意;D.它不符合正比例函数的定义,则D不符合题意;故选:A.2.解析:解:由于众数是数据中出现次数最多的数,故班长最值得关注的应该是统计调查数据的众数.故选:C.3.解析:解:0.00076这个数用科学记数法表示为7.6×10﹣4.故选:B.4.解析:解:A.当x=5时,y=5+2=7,7≠3,∴点(5,3)不在函数y=x+2的图象上,选项A不符合题意;B.当x=4时,y=4+2=6,6≠2,∴点(4,2)不在函数y=x+2的图象上,选项B不符合题意;C.当x=﹣1时,y=﹣1+2=1,1≠﹣3,∴点(﹣1,﹣3)不在函数y=x+2的图象上,选项C不符合题意;D.当x=1时,y=1+2=3,3=3,∴点(1,3)在函数y=x+2的图象上,选项D符合题意.故选:D.5.解析:解:,方程两边都乘x+3,得x﹣1=0,解得:x=1,检验:当x=1时,x+3≠0,所以分式方程的解是x=1,故选:C.6.解析:解:∵矩形ABCD沿EF对折后两部分重合,∠1=48°,∴∠3=∠2==66°,∵矩形对边AD∥BC,∴∠AEF=180°﹣∠3=180°﹣66°=114°.故选:C.7.解析:解:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠ABE=∠CDF,甲:∵BF=DE,∴BF﹣EF=DE﹣EF,∴BE=DF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS),∴AE=CF,∠AEB=∠CFD,∴∠AEF=∠CFE,∴AE∥CF,∴四边形AECF为平行四边形,故甲正确;乙:由AE=CF,不能证明△ABE≌△CDF,不能使四边形AECF为平行四边形,故乙不正确;丙:∵AE∥CF,∴∠AEF=∠CF,∴∠AEB=∠CFDE,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS),∴AE=CF,∴四边形AECF为平行四边形,故丙正确;故选:B.8.解析:解:∵矩形ABCD的对称轴与坐标轴重合,∴,点O是矩形ABCD的对称中心,∵反比例函数的图象也关于点O成中心对称,∴S△AEF=S△CGH,∵S△AEF+S△CGH=2,∴S△AEF=S△CGH=1,∵BE=3AE,∴,∵设AE=a,则AB=4a,,∵点E、F都在反比例函数的图象上,∴,,∴,,∴,∴,解得:k=﹣4,故选:C.二、填空题(每小题3分,共18分)9.解析:解:=3x.故答案为:3x.10.解析:解:因为,即乙舞蹈团身高的方差小于甲,则乙舞蹈团参加演出的女演员身高更整齐.故答案为:乙.11.解析:解:∵反比例函数y=的图象是分布在一三象限的双曲线,y=kx是过原点的一条直线,∴当k<0时,直线在二四象限,与双曲线无交点,k值只要满足小于0即可.∴k=﹣1(答案不唯一).故答案为:k=﹣1(答案不唯一).12.解析:解:∵四边形ABCD是平行四边形,∴AD∥BC,∠A=∠C,∴∠A+∠B=180°,∵∠A与∠B的大小的比是4:5,∴∠C=∠A=×180°=80°,故答案为:80.13.解析:解:将直线y=﹣3x向上平移2个单位长度,所得的函数解析式为y=﹣3x+2.故答案为:y=﹣3x+2.14.解析:解:如图,连接DK,DN,∵∠KDN=∠MDT=90°,∴∠KDM=∠NDT,∵DK=DN,∠DKM=∠DNT=45°,∴△DKM≌△DNT(ASA),∴S△DKM=S△DNT,∴S四边形DMNT=S△DKN=a,∴正方形ABCD的面积=4×a+b=a+b.故答案为(a+b).三、解答题(本大题10小题,共78分)15.解析:解:(﹣2)0﹣|﹣5|+3﹣2=1﹣5+=﹣4+=﹣.16.解析:解:原式=•a(a+1)=a,当a=﹣5时,原式=﹣5.17.解析:解:如图:(1)菱形ABCD即为所求;(2)菱形ACBD即为所求.18.解析:解:设该公司购买B型芯片的单价为x元,则A型芯片的单价为(x﹣9)元,根据题意,得,解得x=35,经检验,x=35是原方程的解,且符合题意.答:该公司购买B型芯片的单价为35元.19.解析:解:(1)影片甲单日票房从小到大排列如下:3.69,3.70,3.92,3.99,4.32,4.33,而(3.92+3.99)÷2=3.955,∴1月22日—27日的六天时间内,影片甲单日票房的中位数为3.955.故答案为:3.955;(2)×(4.36+3.40+3.24+3.14+2.95+2.73)≈3.30(亿元).∴影片乙的平均票房约为3.30亿元;(3)①影片甲的单日票房并未逐日增加,在23日、26日、27日有下降,故结论①说法错误;②影片乙的单日票房逐日减少,故结论②说法正确;③影片甲的单日票房图象比乙平缓,所以甲单日票房的方差小于乙单日票房的方差,故结论③说法正确;④前六天的单日票房统计中,甲单日票房和乙单日票房之间的差值分别为:22日4.36﹣3.70=0.66;23日3.69﹣3.40=0.29;24日3.99﹣3.24=0.75;25日4.33﹣3.14=1.19;26日4.32﹣2.95=1.37;27日3.92﹣2.73=1.19,所以在前六天的单日票房统计中,甲单日票房和乙单日票房之间的差值在1月26日达到最大,故结论④说法正确.故答案为:②③④.20.解析:证明:∵四边形ABCD是平行四边形,∴AB∥CD,即AB∥CF,∴∠BAE=∠FDE,∵E为线段AD的中点,∴AE=DE,又∵∠AEB=∠DEF,∴△ABE≌△DFE(ASA),∴AB=DF,又∵AB∥DF,∴四边形ABDF是平行四边形,∵∠BDF=90°,∴四边形ABDF是矩形.21.解析:解:(1)设线段BC函数表达式为y=kt+b(12≤t≤18),把(12,4),(18,10)代入得:,解得,∴线段BC函数表达式为y=t﹣8(12≤t≤18);(2)由(1)知,小赵的速度为1km/min,∵小李,小赵同时出发,∴小赵离甲小区的路程为s(km)与出发时间t(分)的函数图象过(0,2),(2,4),补全图象如下:(3)OD的解析式为y=t=t,当小赵未追上小李时,t﹣(t﹣8)=1,解得t=14,当小赵超过小李1km时,(t﹣8)﹣t=1,解得t=18,∴小赵离开超市后,小李与小赵相距1km时,t的值为14或18.22.解析:【教材呈现】证明:过点A作AE⊥l2于点E,过点D作DF⊥l2于点F,如图所示,∴AE∥DF,∵l1∥l2,∴四边形AEFD为平行四边形,∴AE=DF,∵S△ABC=,S△DBC=,∴S△ABC=S△DBC;【方法探究】解:由教材呈现可知:∵AD∥BC,∴△ABE与△DEC两底BE,CE上的高相等,∴S△ABE:S△DEC=BE:CE=2:1,∴S△ABE=2S△DEC;【方法应用】解:过点P作PE⊥AB于点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 鱼塘股份合同协议书
- 食堂搭伙合同协议书
- 兄弟俩出资买房协议书
- 酒店优惠预订协议书
- 分手后房产归属协议书
- 钢筋清包合同协议书
- 餐厅临时员工协议书
- 集体拆迁补偿协议书
- 餐饮员工就餐协议书
- 出租车退车合同协议书
- GA/T 1698-2019法庭科学复制印章印文检验指南
- 11471劳动争议处理(第3章)
- 毕业设计(论文)-六辊管材矫直机设计
- 药物的镇痛作用(实验2)
- 多措并举助推年轻干部“墩苗成长”专题发言、理论中心组研讨交流发言材料2篇
- 体检报告单入职体检模板
- 8D报告标准模板
- 大学学院学生出国(境)访学管理办法(试行)
- 法洛四联症课件
- 酒店客房管理制度
- 国开作业《公共部门人力资源管理》形考任务4:撰写课程学习总结(第1-9章权重25%)参考772
评论
0/150
提交评论