版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
【苏科版】江苏省宜兴新街2023-2024学年中考数学适应性模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.在下列函数中,其图象与x轴没有交点的是()A.y=2x B.y=﹣3x+1 C.y=x2 D.y=2.如图1,在△ABC中,AB=BC,AC=m,D,E分别是AB,BC边的中点,点P为AC边上的一个动点,连接PD,PB,PE.设AP=x,图1中某条线段长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是()A.PD B.PB C.PE D.PC3.化简的结果是()A.±4 B.4 C.2 D.±24.已知⊙O的半径为5,弦AB=6,P是AB上任意一点,点C是劣弧的中点,若△POC为直角三角形,则PB的长度()A.1 B.5 C.1或5 D.2或45.如图,在平行四边形ABCD中,AC与BD相交于O,且AO=BD=4,AD=3,则△BOC的周长为()A.9 B.10 C.12 D.146.点是一次函数图象上一点,若点在第一象限,则的取值范围是().A. B. C. D.7.全球芯片制造已经进入10纳米到7纳米器件的量产时代.中国自主研发的第一台7纳米刻蚀机,是芯片制造和微观加工最核心的设备之一,7纳米就是0.000000007米.数据0.000000007用科学计数法表示为()A. B. C. D.8.据报道,南宁创客城已于2015年10月开城,占地面积约为14400平方米,目前已引进创业团队30多家,将14400用科学记数法表示为()A.14.4×103 B.144×102 C.1.44×104 D.1.44×10﹣49.某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是()A.10,15 B.13,15 C.13,20 D.15,1510.如图,直线m∥n,直角三角板ABC的顶点A在直线m上,则∠α的余角等于()A.19° B.38° C.42° D.52°二、填空题(共7小题,每小题3分,满分21分)11.如图,C为半圆内一点,O为圆心,直径AB长为1cm,∠BOC=60°,∠BCO=90°,将△BOC绕圆心O逆时针旋转至△B′OC′,点C′在OA上,则边BC扫过区域(图中阴影部分)的面积为_________cm1.12.一个正方形AOBC各顶点的坐标分别为A(0,3),O(0,0),B(3,0),C(3,3).若以原点为位似中心,将这个正方形的边长缩小为原来的,则新正方形的中心的坐标为_____.13.已知关于x的一元二次方程kx2+3x﹣4k+6=0有两个相等的实数根,则该实数根是_____.14.若直角三角形两边分别为6和8,则它内切圆的半径为_____.15.为选拔一名选手参加全国中学生游泳锦标赛自由泳比赛,我市四名中学生参加了男子100米自由泳训练,他们成绩的平均数及其方差s2如下表所示:甲乙丙丁1′05″331′04″261′04″261′07″29s21.11.11.31.6如果选拔一名学生去参赛,应派_________去.16.在比例尺为1:50000的地图上,量得甲、乙两地的距离为12厘米,则甲、乙两地的实际距离是______千米.17.如图,在四边形中,,,,,,点从点出发以的速度向点运动,点从点出发以的速度向点运动,、两点同时出发,其中一点到达终点时另一点也停止运动.若,当__时,是等腰三角形.三、解答题(共7小题,满分69分)18.(10分)2017年5月14日至15日,“一带一路”国际合作高峰论坛在北京举行,本届论坛期间,中国同30多个国家签署经贸合作协议,某厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家和地区.已知2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入多1500元.(1)甲种商品与乙种商品的销售单价各多少元?(2)若甲、乙两种商品的销售总收入不低于5400万元,则至少销售甲种商品多少万件?19.(5分)已知:如图,在梯形ABCD中,DC∥AB,AD=BC,BD平分∠ABC,∠A=60°.求:(1)求∠CDB的度数;(2)当AD=2时,求对角线BD的长和梯形ABCD的面积.20.(8分)甲、乙、丙、丁四位同学进行乒乓球单打比赛,要从中选出两位同学打第一场比赛.若确定甲打第一场,再从其余三位同学中随机选取一位,恰好选中乙同学的概率是.若随机抽取两位同学,请用画树状图法或列表法,求恰好选中甲、乙两位同学的概率.21.(10分)某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回),商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费,某顾客刚好消费200元.(1)该顾客至少可得到_____元购物券,至多可得到_______元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.22.(10分)一天晚上,李明和张龙利用灯光下的影子长来测量一路灯D的高度.如图,当李明走到点A处时,张龙测得李明直立身高AM与其影子长AE正好相等,接着李明沿AC方向继续向前走,走到点B处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25m,已知李明直立时的身高为1.75m,求路灯的高CD的长.(结果精确到0.1m)23.(12分)某天,甲、乙、丙三人一起乘坐公交车,他们上车时发现公交车上还有A,B,W三个空座位,且只有A,B两个座位相邻,若三人随机选择座位,试解决以下问题:(1)甲选择座位W的概率是多少;(2)试用列表或画树状图的方法求甲、乙选择相邻座位A,B的概率.24.(14分)已知:二次函数C1:y1=ax2+2ax+a﹣1(a≠0)把二次函数C1的表达式化成y=a(x﹣h)2+b(a≠0)的形式,并写出顶点坐标;已知二次函数C1的图象经过点A(﹣3,1).①求a的值;②点B在二次函数C1的图象上,点A,B关于对称轴对称,连接AB.二次函数C2:y2=kx2+kx(k≠0)的图象,与线段AB只有一个交点,求k的取值范围.
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】
依据一次函数的图象,二次函数的图象以及反比例函数的图象进行判断即可.【详解】A.正比例函数y=2x与x轴交于(0,0),不合题意;B.一次函数y=-3x+1与x轴交于(,0),不合题意;C.二次函数y=x2与x轴交于(0,0),不合题意;D.反比例函数y=与x轴没有交点,符合题意;故选D.2、C【解析】观察可得,点P在线段AC上由A到C的运动中,线段PE逐渐变短,当EP⊥AC时,PE最短,过垂直这个点后,PE又逐渐变长,当AP=m时,点P停止运动,符合图像的只有线段PE,故选C.点睛:本题考查了动点问题的函数图象,对于此类问题来说是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.3、B【解析】
根据算术平方根的意义求解即可.【详解】4,故选:B.【点睛】本题考查了算术平方根的意义,一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根,正数a有一个正的算术平方根,0的算术平方根是0,负数没有算术平方根.4、C【解析】
由点C是劣弧AB的中点,得到OC垂直平分AB,求得DA=DB=3,根据勾股定理得到OD==1,若△POC为直角三角形,只能是∠OPC=90°,则根据相似三角形的性质得到PD=2,于是得到结论.【详解】∵点C是劣弧AB的中点,∴OC垂直平分AB,∴DA=DB=3,∴OD=,若△POC为直角三角形,只能是∠OPC=90°,则△POD∽△CPD,∴,∴PD2=4×1=4,∴PD=2,∴PB=3﹣2=1,根据对称性得,当P在OC的左侧时,PB=3+2=5,∴PB的长度为1或5.故选C.【点睛】考查了圆周角,弧,弦的关系,勾股定理,垂径定理,正确左侧图形是解题的关键.5、A【解析】
利用平行四边形的性质即可解决问题.【详解】∵四边形ABCD是平行四边形,∴AD=BC=3,OD=OB==2,OA=OC=4,∴△OBC的周长=3+2+4=9,故选:A.【点睛】题考查了平行四边形的性质和三角形周长的计算,平行四边形的性质有:平行四边形对边平行且相等;平行四边形对角相等,邻角互补;平行四边形对角线互相平分.6、B【解析】试题解析:把点代入一次函数得,.∵点在第一象限上,∴,可得,因此,即,故选B.7、A【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】数据0.000000007用科学记数法表示为7×10-1.故选A.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.8、C【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【详解】14400=1.44×1.故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9、D【解析】
将五个答题数,从小打到排列,5个数中间的就是中位数,出现次数最多的是众数.【详解】将这五个答题数排序为:10,13,15,15,20,由此可得中位数是15,众数是15,故选D.【点睛】本题考查中位数和众数的概念,熟记概念即可快速解答.10、D【解析】试题分析:过C作CD∥直线m,∵m∥n,∴CD∥m∥n,∴∠DCA=∠FAC=52°,∠α=∠DCB,∵∠ACB=90°,∴∠α=90°﹣52°=38°,则∠a的余角是52°.故选D.考点:平行线的性质;余角和补角.二、填空题(共7小题,每小题3分,满分21分)11、【解析】
根据直角三角形的性质求出OC、BC,根据扇形面积公式计算即可.【详解】解:∵∠BOC=60°,∠BCO=90°,∴∠OBC=30°,∴OC=OB=1则边BC扫过区域的面积为:故答案为.【点睛】考核知识点:扇形面积计算.熟记公式是关键.12、(,)或(﹣,﹣).【解析】
分点A、B、C的对应点在第一象限和第三象限两种情况,根据位似变换和正方形的性质解答可得.【详解】如图,①当点A、B、C的对应点在第一象限时,由位似比为1:2知点A′(0,)、B′(,0)、C′(,),∴该正方形的中心点的P的坐标为(,);②当点A、B、C的对应点在第三象限时,由位似比为1:2知点A″(0,-)、B″(-,0)、C″(-,-),∴此时新正方形的中心点Q的坐标为(-,-),故答案为(,)或(-,-).【点睛】本题主要考查位似变换,解题的关键是熟练掌握位似变换的性质和正方形的性质.13、﹣1【解析】
根据二次项系数非零结合根的判别式△=0,即可得出关于k的一元一次不等式及一元二次方程,解之即可得出k值,将其代入原方程中解之即可得出原方程的解.【详解】解:∵关于x的一元二次方程kx1+3x-4k+6=0有两个相等的实数根,∴,解得:k=,∴原方程为x1+4x+4=0,即(x+1)1=0,解得:x=-1.故答案为:-1.【点睛】本题考查根的判别式、一元二次方程的定义以及配方法解一元二次方程,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.14、2或-1【解析】
根据已知题意,求第三边的长必须分类讨论,即8是斜边或直角边的两种情况,然后利用勾股定理求出另一边的长,再根据内切圆半径公式求解即可.【详解】若8是直角边,则该三角形的斜边的长为:,∴内切圆的半径为:;若8是斜边,则该三角形的另一条直角边的长为:,∴内切圆的半径为:.故答案为2或-1.【点睛】本题考查了勾股定理,三角形的内切圆,以及分类讨论的数学思想,分类讨论是解答本题的关键.15、乙【解析】
∵丁〉甲乙=丙,∴从乙和丙中选择一人参加比赛,
∵S
乙2<S
丙2,
∴选择乙参赛,
故答案是:乙.16、【解析】
本题可根据比例线段进行求解.【详解】解:因为在比例尺为1:50000的地图上甲,乙两地的距离12cm,所以,甲、乙的实际距离x满足12:x=1:50000,即x=12=600000cm=6km.故答案为6.【点睛】本题主要考查比例尺和比例线段的相关知识.17、或.【解析】
根据题意,用时间t表示出DQ和PC,然后根据等腰三角形腰的情况分类讨论,①当时,画出对应的图形,可知点在的垂直平分线上,QE=,AE=BP,列出方程即可求出t;②当时,过点作于,根据勾股定理求出PQ,然后列出方程即可求出t.【详解】解:由运动知,,,,,,,是等腰三角形,且,①当时,过点P作PE⊥AD于点E点在的垂直平分线上,QE=,AE=BP,,,②当时,如图,过点作于,,,,,四边形是矩形,,,,在中,,,,点在边上,不和重合,,,此种情况符合题意,即或时,是等腰三角形.故答案为:或.【点睛】此题考查的是等腰三角形的定义和动点问题,掌握等腰三角形的定义和分类讨论的数学思想是解决此题的关键.三、解答题(共7小题,满分69分)18、(1)甲种商品的销售单价900元,乙种商品的销售单价600元;(1)至少销售甲种商品1万件.【解析】
(1)可设甲种商品的销售单价x元,乙种商品的销售单价y元,根据等量关系:①1件甲种商品与3件乙种商品的销售收入相同,②3件甲种商品比1件乙种商品的销售收入多1500元,列出方程组求解即可;(1)可设销售甲种商品a万件,根据甲、乙两种商品的销售总收入不低于5400万元,列出不等式求解即可.【详解】(1)设甲种商品的销售单价x元,乙种商品的销售单价y元,依题意有:,解得.答:甲种商品的销售单价900元,乙种商品的销售单价600元;(1)设销售甲种商品a万件,依题意有:900a+600(8﹣a)≥5400,解得:a≥1.答:至少销售甲种商品1万件.【点睛】本题考查了一元一次不等式及二元一次方程组的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式及所求量的等量关系.19、:(1)30º;(2).【解析】分析:(1)由已知条件易得∠ABC=∠A=60°,结合BD平分∠ABC和CD∥AB即可求得∠CDB=30°;(2)过点D作DH⊥AB于点H,则∠AHD=30°,由(1)可知∠BDA=∠DBC=30°,结合∠A=60°可得∠ADB=90°,∠ADH=30°,DC=BC=AD=2,由此可得AB=2AD=4,AH=,这样即可由梯形的面积公式求出梯形ABCD的面积了.详解:(1)∵在梯形ABCD中,DC∥AB,AD=BC,∠A=60°,∴∠CBA=∠A=60º,∵BD平分∠ABC,∴∠CDB=∠ABD=∠CBA=30º,(2)在△ACD中,∵∠ADB=180º–∠A–∠ABD=90º.∴BD=ADA=2tan60º=2.过点D作DH⊥AB,垂足为H,∴AH=ADA=2sin60º=.∵∠CDB=∠CBD=∠CBD=30º,∴DC=BC=AD=2∵AB=2AD=4∴.点睛:本题是一道应用等腰梯形的性质求解的题,熟悉等腰梯形的性质和直角三角形中30°的角所对直角边是斜边的一半及等腰三角形的判定,是正确解答本题的关键.20、(1)13;(2)【解析】
1)由题意可得共有乙、丙、丁三位同学,恰好选中乙同学的只有一种情况,则可利用概率公式求解即可求得答案;
(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好选中甲、乙两位同学的情况,再利用概率公式求解即可求得答案.【详解】解:(1)∵甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,确定甲打第一场,再从其余的三位同学中随机选取一位,∴恰好选到丙的概率是:13(2)画树状图得:∵共有12种等可能的结果,恰好选中甲、乙两人的有2种情况,∴恰好选中甲、乙两人的概率为:2【点睛】此题考查的是用列表法或树状图法求概率.注意树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.21、解:(1)10,50;(2)解法一(树状图):从上图可以看出,共有12种可能结果,其中大于或等于30元共有8种可能结果,因此P(不低于30元)=;解法二(列表法):(以下过程同“解法一”)【解析】
试题分析:(1)由在一个不透明的箱子里放有4个相同的小球,球上分别标有“0”元,“10”元,“20”元和“30”元的字样,规定:顾客在本商场同一日内,每消费满200元,就可以再箱子里先后摸出两个球(第一次摸出后不放回).即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与顾客所获得购物券的金额不低于30元的情况,再利用概率公式求解即可求得答案.试题解析:(1)10,50;(2)解法一(树状图):,从上图可以看出,共有12种可能结果,其中大于或等于30元共有8种可能结果,因此P(不低于30元)==;解法二(列表法):
0
10
20
30
0
﹣﹣
10
20
30
10
10
﹣﹣
30
40
20
20
30
﹣﹣
50
30
30
40
50
﹣﹣
从上表可以看出,共有12种可能结果,其中大于或等于30元共有8种可能结果,因此P(不低于30元)==;考点:列表法与树状图法.【详解】请在此输入详解!22、路灯的高CD的长约为6.1m.【解析】设路灯的高CD为xm,∵CD⊥EC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025关于入股合同协议书范文
- 二零二五年度工地燃油配送与施工现场安全监督合同3篇
- 二零二五年度房产购房合同之经济适用房3篇
- 2025维修保养机器合同
- 二零二五年度办公场地租赁合同-含企业专属休息区2篇
- 二零二五年度委托代建合同:某政府与建筑公司关于公共设施建设的委托代建合同
- 二零二五年度房地产项目竣工验收与交付服务合同3篇
- 二零二五年度商铺租赁代理合同书2篇
- 二零二五年度按揭车辆转让与二手车鉴定评估合同2篇
- 二零二五年度净水器品牌授权与特许经营合同范本3篇
- 农作物植保员培训课件
- 2024韩束品牌拆解-蝉妈妈
- 建筑企业合同管理培训课件
- 非急救转运公司计划书
- 2023年中国软件行业基准数据SSM-BK-202310
- 天津市部分区2023-2024学年高一上学期期末练习生物试题【含答案解析】
- 稀土铝合金电缆项目招商引资方案
- 人教版六年级数学下册全册分层作业设计含答案
- 面点专业职业生涯规划与管理
- 纪梵希服装营销方案
- 农耕研学基地可行性方案
评论
0/150
提交评论